VETIM: Expanding the Vocabulary of Text-to-Image Models only with Text
Related publications (48)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In several machine learning settings, the data of interest are well described by graphs. Examples include data pertaining to transportation networks or social networks. Further, biological data, such as proteins or molecules, lend themselves well to graph- ...
Recent breakthroughs in deep learning often rely on representation learning and knowledge transfer. In recent years, unsupervised and self-supervised techniques for learning speech representation were developed to foster automatic speech recognition. Up to ...
EUROPEAN ASSOC SIGNAL SPEECH & IMAGE PROCESSING-EURASIP2021
Machine learning has become the state of the art for the solution of the diverse inverse problems arising from computer vision and medical imaging, e.g. denoising, super-resolution, de-blurring, reconstruction from scanner data, quantitative magnetic reson ...
To operate the railway system safely and efficiently, a multitude of assets need to me monitored. Railway sleepers are one of these infrastructure assets, that are safety critical. To automate the monitoring process, data-driven fault diagnostics models ha ...
Flood prediction in ungauged catchments is usually conducted by hydrological models that are parameterized based on nearby and similar gauged catchments. As an alternative to this process-based modelling, deep learning (DL) models have demonstrated their a ...
ELSEVIER2022
,
Despite their irresistible success, deep learning algorithms still heavily rely on annotated data, and unsupervised settings pose many challenges, such as finding the right inductive bias in diverse scenarios. In this paper, we propose an object-centric mo ...
IEEE2021
,
While annotated images for change detection using satellite imagery are scarce and costly to obtain, there is a wealth of unlabeled images being generated every day. In order to leverage these data to learn an image representation more adequate for change ...
Springer, Cham2021
,
Nowadays, image and video are the data types that consume most of the resources of modern communication channels, both in fixed and wireless networks. Thus, it is vital to compress visual data as much as possible, while maintaining some target quality leve ...
SPIE-INT SOC OPTICAL ENGINEERING2021
Flow-based generative models have become an important class of unsupervised learning approaches. In this work, we incorporate the key ideas of renormalization group (RG) and sparse prior distribution to design a hierarchical flow-based generative model, RG ...
Image classification has significantly improved using deep learning. This is mainly due to convolutional neural networks (CNNs) that are capable of learning rich feature extractors from large datasets. However, most deep learning classification methods are ...