Publication

Deconvolution of ex-vivo drug screening data and bulk tissue expression predicts the abundance and viability of cancer cell subpopulations

Alexandre Coudray
2024
EPFL thesis
Abstract

Ex-vivo drug sensitivity screening (DSS) allows the prediction of cancer treatment effectiveness in a personalized fashion. However, it only provides a readout on mixtures of cells, potentially occulting important information on clinically relevant cell subtypes. To address this shortcoming, we developed a machine-learning framework to deconvolute bulk RNA expression matched with bulk drug sensitivity into cell subtype composition and cell subtype drug sensitivity. We first determined that our method could decipher the cellular composition of bulk samples with top-ranking accuracy compared to state-of-the-art deconvolution methods. We then optimized an algorithm capable of estimating cell subtype- and single-cell-specific drug sensitivity, which we evaluated by performing in-vitro drug studies and in-depth simulations. We then applied our deconvolution strategy to Acute Myeloid Leukemia (AML) context using the beatAML cohort dataset, currently the most extensive database of ex-vivo DSS. We generated a landscape of cell subtype-specific drug sensitivity and focused on four therapeutic compounds predicted to target leukemic stem cells: A-674563, sorafenib, foretinib, and venetoclax. We defined their efficacy at the single-cell level and characterized a population of venetoclax-resistant cancer stem-like cells. Our work provides an attractive new computational tool for drug development and precision medicine.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Drug design
Drug design, often referred to as rational drug design or simply rational design, is the inventive process of finding new medications based on the knowledge of a biological target. The drug is most commonly an organic small molecule that activates or inhibits the function of a biomolecule such as a protein, which in turn results in a therapeutic benefit to the patient. In the most basic sense, drug design involves the design of molecules that are complementary in shape and charge to the biomolecular target with which they interact and therefore will bind to it.
Drug development
Drug development is the process of bringing a new pharmaceutical drug to the market once a lead compound has been identified through the process of drug discovery. It includes preclinical research on microorganisms and animals, filing for regulatory status, such as via the United States Food and Drug Administration for an investigational new drug to initiate clinical trials on humans, and may include the step of obtaining regulatory approval with a new drug application to market the drug.
Personalized medicine
Personalized medicine, also referred to as precision medicine, is a medical model that separates people into different groups—with medical decisions, practices, interventions and/or products being tailored to the individual patient based on their predicted response or risk of disease. The terms personalized medicine, precision medicine, stratified medicine and P4 medicine are used interchangeably to describe this concept though some authors and organisations use these expressions separately to indicate particular nuances.
Show more
Related publications (34)

Optimised three-dimensional in vitro retinoblastoma models tailored for drug discovery and clinical translatability

Irina Sinenko

Retinoblastoma, while relatively rare, stands as the most prevalent intraocular cancer. In Switzerland, the survival rate approaches 100%, but it drops to less than 50% in low-income countries. The current treatment options for retinoblastoma rely on a lim ...
EPFL2023

Label-free plasmonic microarray for multiplexed analysis of cells and tumor organoids

Yen-Cheng Liu

Investigating the dynamic activities of protein expression and signaling in living organisms is a crucial focus of intense research aimed at elucidating the processes that underlie disease progression and improving treatments and drug development. Resolvin ...
EPFL2023

CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity

Daniele Tavernari, Albert Santamaria Martinez, Giovanni Ciriello

Tissues are organized in cellular niches, the composition and interactions of which can be investigated using spatial omics technologies. However, systematic analyses of tissue composition are challenged by the scale and diversity of the data. Here we pres ...
Berlin2023
Show more
Related MOOCs (11)
Introduction à l'immunologie (part 1)
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.