Torsion-free abelian groupIn mathematics, specifically in abstract algebra, a torsion-free abelian group is an abelian group which has no non-trivial torsion elements; that is, a group in which the group operation is commutative and the identity element is the only element with finite order. While finitely generated abelian groups are completely classified, not much is known about infinitely generated abelian groups, even in the torsion-free countable case. Abelian group An abelian group is said to be torsion-free if no element other than the identity is of finite order.
Reduced homologyIn mathematics, reduced homology is a minor modification made to homology theory in algebraic topology, motivated by the intuition that all of the homology groups of a single point should be equal to zero. This modification allows more concise statements to be made (as in Alexander duality) and eliminates many exceptional cases (as in the homology groups of spheres). If P is a single-point space, then with the usual definitions the integral homology group H0(P) is isomorphic to (an infinite cyclic group), while for i ≥ 1 we have Hi(P) = {0}.
Floer homologyIn mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold.
Torsion-free moduleIn algebra, a torsion-free module is a module over a ring such that zero is the only element annihilated by a regular element (non zero-divisor) of the ring. In other words, a module is torsion free if its torsion submodule is reduced to its zero element. In integral domains the regular elements of the ring are its nonzero elements, so in this case a torsion-free module is one such that zero is the only element annihilated by some non-zero element of the ring.
Homological algebraHomological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .
Resolution of singularitiesIn algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety V has a resolution, a non-singular variety W with a proper birational map W→V. For varieties over fields of characteristic 0 this was proved in Hironaka (1964), while for varieties over fields of characteristic p it is an open problem in dimensions at least 4. Originally the problem of resolution of singularities was to find a nonsingular model for the function field of a variety X, in other words a complete non-singular variety X′ with the same function field.
Differential graded algebraIn mathematics, in particular in homological algebra, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure. TOC A differential graded algebra (or DG-algebra for short) A is a graded algebra equipped with a map which has either degree 1 (cochain complex convention) or degree −1 (chain complex convention) that satisfies two conditions: A more succinct way to state the same definition is to say that a DG-algebra is a monoid object in the .
Homogeneous coordinate ringIn algebraic geometry, the homogeneous coordinate ring R of an algebraic variety V given as a subvariety of projective space of a given dimension N is by definition the quotient ring R = K[X0, X1, X2, ..., XN] / I where I is the homogeneous ideal defining V, K is the algebraically closed field over which V is defined, and K[X0, X1, X2, ..., XN] is the polynomial ring in N + 1 variables Xi. The polynomial ring is therefore the homogeneous coordinate ring of the projective space itself, and the variables are the homogeneous coordinates, for a given choice of basis (in the vector space underlying the projective space).
Derivation (differential algebra)In mathematics, a derivation is a function on an algebra which generalizes certain features of the derivative operator. Specifically, given an algebra A over a ring or a field K, a K-derivation is a K-linear map D : A → A that satisfies Leibniz's law: More generally, if M is an A-bimodule, a K-linear map D : A → M that satisfies the Leibniz law is also called a derivation. The collection of all K-derivations of A to itself is denoted by DerK(A). The collection of K-derivations of A into an A-module M is denoted by DerK(A, M).
E8 (mathematics)DISPLAYTITLE:E8 (mathematics) In mathematics, E8 is any of several closely related exceptional simple Lie groups, linear algebraic groups or Lie algebras of dimension 248; the same notation is used for the corresponding root lattice, which has rank 8. The designation E8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled G2, F4, E6, E7, and E8. The E8 algebra is the largest and most complicated of these exceptional cases.