In algebra, a torsion-free module is a module over a ring such that zero is the only element annihilated by a regular element (non zero-divisor) of the ring. In other words, a module is torsion free if its torsion submodule is reduced to its zero element.
In integral domains the regular elements of the ring are its nonzero elements, so in this case a torsion-free module is one such that zero is the only element annihilated by some non-zero element of the ring. Some authors work only over integral domains and use this condition as the definition of a torsion-free module, but this does not work well over more general rings, for if the ring contains zero-divisors then the only module satisfying this condition is the zero module.
Over a commutative ring R with total quotient ring K, a module M is torsion-free if and only if Tor1(K/R,M) vanishes. Therefore flat modules, and in particular free and projective modules, are torsion-free, but the converse need not be true. An example of a torsion-free module that is not flat is the ideal (x, y) of the polynomial ring k[x, y] over a field k, interpreted as a module over k[x, y].
Any torsionless module over a domain is a torsion-free module, but the converse is not true, as Q is a torsion-free Z-module which is not torsionless.
Over a Noetherian integral domain, torsion-free modules are the modules whose only associated prime is zero. More generally, over a Noetherian commutative ring the torsion-free modules are those modules all of whose associated primes are contained in the associated primes of the ring.
Over a Noetherian integrally closed domain, any finitely-generated torsion-free module has a free submodule such that the quotient by it is isomorphic to an ideal of the ring.
Over a Dedekind domain, a finitely-generated module is torsion-free if and only if it is projective, but is in general not free. Any such module is isomorphic to the sum of a finitely-generated free module and an ideal, and the class of the ideal is uniquely determined by the module.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields.
In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element. This terminology is more commonly used for modules over a domain, that is, when the regular elements of the ring are all its nonzero elements.
In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion free modules. Formally, a module M over a ring R is flat if taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact. Flatness was introduced by in his paper Géometrie Algébrique et Géométrie Analytique.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Communication proficiency is one of the most important results of a good PhD and postdoc experience and it is valued
equally in academia and in industry. EPFL PhD students and postdocs are expected to
Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex ...
We examine the moments of the number of lattice points in a fixed ball of volume V for lattices in Euclidean space which are modules over the ring of integers of a number field K. In particular, denoting by ωK the number of roots of unity in K, we ...
A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. By means of a suitably defined duality, new correspondence functors are constructed, having remarkable p ...