Exploiting Explanations to Detect Misclassifications of Deep Learning Models in Power Grid Visual Inspection
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Explainable Artificial Intelligence (XAI) plays a crucial role in enabling human understanding and trust in deep learning systems, often defined as determining which features are most important to a model's prediction. As models get larger, more ubiquitous ...
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
Test time augmentation has been shown to be an effective approach to combat domain shifts in deep learning. Despite their promising performance levels, the interpretability of the underlying used models is however low. Saliency maps have been widely used i ...
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really gener ...
Recent works have identified a gap between research and practice in artificial intelligence security: threats studied in academia do not always reflect the practical use and security risks of AI. For example, while models are often studied in isolation, th ...
Cities are increasingly reusing industrial heritage as part of cultural and creative regeneration strategies. However, designers and decision-makers face the challenge of determining which features and elements of industrial heritage are more perceived and ...
Deep learning models for learning analytics have become increasingly popular over the last few years; however, these approaches are still not widely adopted in real-world settings, likely due to a lack of trust and transparency. In this paper, we tackle th ...
In this master thesis, multi-agent reinforcement learning is used to teach robots to build a self-supporting structure connecting two points. To accomplish this task, a physics simulator is first designed using linear programming. Then, the task of buildin ...
End-to-end learning methods like deep neural networks have been the driving force in the remarkable progress of machine learning in recent years. However, despite their success, the deployment process of such networks in safety-critical use cases, such as ...