Controlled physics-informed data generation for deep learning-based remaining useful life prediction under unseen operation conditions
Related publications (37)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we propose and compare personalized models for Productive Engagement (PE) recognition. PE is defined as the level of engagement that maximizes learning. Previously, in the context of robot-mediated collaborative learning, a framework of prod ...
Deep learning algorithms are responsible for a technological revolution in a variety oftasks including image recognition or Go playing. Yet, why they work is not understood.Ultimately, they manage to classify data lying in high dimension – a feat generical ...
Many pathologies cause impairments in the speech production mechanism resulting in reduced speech intelligibility and communicative ability. To assist the clinical diagnosis, treatment and management of speech disorders, automatic pathological speech asses ...
Cryo-electron tomography (Cryo-ET) has been regarded as a revolution in structural biology and can reveal molecular sociology. Its unprecedented quality enables it to visualize cellular organelles and macromolecular complexes at nanometer resolution with n ...
The goal of habitat suitability mapping is to predict the lo-cations in which a given species could be present. This is typically accomplished by statistical models which use envi-ronmental variables to predict species observation data. The relationship be ...
The ability to forecast human motion, called ``human trajectory forecasting", is a critical requirement for mobility applications such as autonomous driving and robot navigation. Humans plan their path taking into account what might happen in the future. S ...
Auditory perception is an essential part of a robotic system in Human-Robot Interaction (HRI), and creating an artificial auditory perception system that is on par with human has been a long-standing goal for researchers. In fact, this is a challenging res ...
Human detection and pose estimation are essential components for any artificial system responsive to the presence of humans and that react according to human-centered tasks. Robotic systems are typical examples, for which the body pose represents fine grai ...
Progress in computing capabilities has enhanced science in many ways. In recent years, various branches of machine learning have been the key facilitators in forging new paths, ranging from categorizing big data to instrumental control, from materials desi ...
Touch is commonly used to mediate human-machine interactions, notably in the setting of Digital Musical Instruments (DMIs), where touch screens are prevalent. The lack of rich haptic feedback has an impact on the richness and quality of the interaction. Pi ...