A Compact Front-End Circuit for a Monolithic Sensor in a 65-nm CMOS Imaging Technology
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
DC-DC converters based on Application Specific Integrated Circuits (ASICs) have been developed in this doctoral work for the High-Luminosity Large Hadron Collider (HL-LHC) experiments at CERN. They step down the voltage from a 2.5 V line and supply a load ...
Monolithic pixel sensors integrate the sensor matrix and readout in the same silicon die, and therefore present several advantages over the more largely used hybrid detectors in high-energy physics. They offer an easier detector assembly, lower cost, lower ...
We present an all-digital application specific integrated circuit (ASIC) that implements Bluetooth Low Energy (BLE)-compatible backscatter communication. The ASIC was fabricated in a 65 nm CMOS process and occupies an active area of 0.12 mm(2) while consum ...
The revolution of information-technology owes to silicon-based complementary-metal-oxide (CMOS) technology. However, CMOS technology approaches its physical limitation hardening the further progress of memory devices as well as computing paradigm requiring ...
EPFL2019
, ,
This paper presents a modeling approach to simulate the impact of total ionizing dose (TID) degradation on low-power analog and mixed-signal circuits. The modeling approach has been performed on 180-nm n-type metal-oxide-semiconductor field-effect transist ...
Deeply-scaled three-dimensional (3D) Multi-Processor Systems-on-Chip (MPSoCs) enable high performance and massive communication bandwidth for next-generation computing. However, as process nodes shrink, temperature-dependent leakage dramatically increases, ...
The growth of information technology has been sustained by the miniaturization of Complementary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistors (FETs), with the number of devices per unit area constantly increasing, as exemplified by Mooreâs la ...
Substantial downscaling of the feature size in current CMOS technology has confronted digital designers with serious challenges including short channel effect and high amount of leakage power. To address these problems, emerging nano-devices, e.g., Silicon ...
The integration of the resistive random access memory (ReRAM) with CMOS logic circuitry provides a solution to scaling limitations, and offers promising candidates for use in next generation computing applications. It is challenging to realize a reliable, ...
Integration of CMOS electronic circuits and electromechanical resonators has been pursued for a long time by many different research groups and even foundries. This would improve the overall performance of electromechanical oscillators and sensors. However ...
Institute of Electrical and Electronics Engineers2017