Complex Daily Activities, Country-Level Diversity, and Smartphone Sensing: A Study in Denmark, Italy, Mongolia, Paraguay, and UK
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Machine learning has provided a means to accelerate early-stage drug discovery by combining molecule generation and filtering steps in a single architecture that leverages the experience and design preferences of medicinal chemists. However, designing mach ...
Machine learning (ML) enables artificial intelligent (AI) agents to learn autonomously from data obtained from their environment to perform tasks. Modern ML systems have proven to be extremely effective, reaching or even exceeding human intelligence.Althou ...
Machine learning techniques have been extensively developed in the field of electricity theft detection. However, almost all typical models primarily rely on electricity consumption data to identify fraudulent users, often neglecting other pertinent househ ...
Supervised machine learning models are receiving increasing attention in electricity theft detection due to their high detection accuracy. However, their performance depends on a massive amount of labeled training data, which comes from time-consuming and ...
As computational thinking (CT) becomes increasingly acknowledged as an important skill in education, self-directed learning (SDL) emerges as a key strategy for developing this capability. The advent of generative AI (GenAI) conversational agents has disrup ...
A range of behavioral and contextual factors, including eating and drinking behavior, mood, social context, and other daily activities, can significantly impact an individual's quality of life and overall well-being. Therefore, inferring everyday life aspe ...
While momentum-based accelerated variants of stochastic gradient descent (SGD) are widely used when training machine learning models, there is little theoretical understanding on the generalization error of such methods. In this work, we first show that th ...
Modern neuroscience research is generating increasingly large datasets, from recording thousands of neurons over long timescales to behavioral recordings of animals spanning weeks, months, or even years. Despite a great variety in recording setups and expe ...
Earth scientists study a variety of problems with remote sensing data, but they most often consider them in isolation from each other, which limits information flows across disciplines. In this work, we present METEOR, a meta-learning methodology for Earth ...
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...