Publication

Robust Outlier Rejection for 3D Registration with Variational Bayes

Abstract

Learning-based outlier (mismatched correspondence) rejection for robust 3D registration generally formulates the outlier removal as an inlier/outlier classification problem. The core for this to be successful is to learn the discriminative inlier/outlier feature representations. In this paper, we develop a novel variational non-local network-based outlier rejection framework for robust alignment. By reformulating the non-local feature learning with variational Bayesian inference, the Bayesian-driven long-range dependencies can be modeled to aggregate discriminative geometric context information for inlier/outlier distinction. Specifically, to achieve such Bayesian-driven contextual dependencies, each query/key/value component in our nonlocal network predicts a prior feature distribution and a posterior one. Embedded with the inlier/outlier label, the posterior feature distribution is label-dependent and discriminative. Thus, pushing the prior to be close to the discriminative posterior in the training step enables the features sampled from this prior at test time to model high-quality long-range dependencies. Notably, to achieve effective posterior feature guidance, a specific probabilistic graphical model is designed over our non-local model, which lets us derive a variational low bound as our optimization objective for model training. Finally, we propose a voting-based inlier searching strategy to cluster the high-quality hypothetical inliers for transformation estimation. Extensive experiments on 3DMatch, 3DLoMatch, and KITTI datasets verify the effectiveness of our method. Code is available at https://github.com/Jiang-HB/VBReg.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Discriminative model
Discriminative models, also referred to as conditional models, are a class of logistical models used for classification or regression. They distinguish decision boundaries through observed data, such as pass/fail, win/lose, alive/dead or healthy/sick. Typical discriminative models include logistic regression (LR), conditional random fields (CRFs) (specified over an undirected graph), decision trees, and many others. Typical generative model approaches include naive Bayes classifiers, Gaussian mixture models, variational autoencoders, generative adversarial networks and others.
Deep learning
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.
Conditional random field
Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without considering "neighbouring" samples, a CRF can take context into account. To do so, the predictions are modelled as a graphical model, which represents the presence of dependencies between the predictions. What kind of graph is used depends on the application.
Show more
Related publications (94)

MaskCLR: Attention-Guided Contrastive Learning for Robust Action Representation Learning

Alexandre Massoud Alahi, Mohamed Ossama Ahmed Abdelfattah, Mariam Ahmed Mahmoud Hegazy Hassan

Current transformer-based skeletal action recognition models tend to focus on a limited set of joints and low-level motion patterns to predict action classes. This results in significant performance degradation under small skeleton perturbations or changin ...
2024

Learnable Wavelet Transform and Domain Adversarial Learning for Enhanced Bearing Fault Diagnosis

Olga Fink, Gaëtan Michel Frusque, Qi Li, Baorui Dai

The application of unsupervised domain adaptation (UDA)-based fault diagnosis methods has shown significant efficacy in industrial settings, facilitating the transfer of operational experience and fault signatures between different operating conditions, di ...
Research Publishing2023

Smart filter aided domain adversarial neural network for fault diagnosis in noisy industrial scenarios

Olga Fink, Gaëtan Michel Frusque, Tianfu Li, Qi Li, Baorui Dai

The application of unsupervised domain adaptation (UDA)-based fault diagnosis methods has shown significant efficacy in industrial settings, facilitating the transfer of operational experience and fault signatures between different operating conditions, di ...
2023
Show more