Ultra-high quantum coherent and scalable superconducting circuit optomechanics, from topological lattices to quantum storage
Related publications (172)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The reproducibility of qubit parameters is a challenge for scaling up superconducting quantum processors. Signal cross talk imposes constraints on the frequency separation between neighboring qubits. The frequency uncertainty of transmon qubits arising fro ...
Lanthanide atoms on surfaces are an exceptional platform for atomic-scale magnetic information storage. However, their potential as qubits remains unexplored due to the limited number of experimental setups that can coherently drive the spins of single ada ...
Superconducting materials present unique properties, which make a potential technological platform based on superconductors extremely appealing for a wide set of applications, both classical and not. Among these classes of materials, high-kinetic inductanc ...
EPFL2023
,
Biphoton frequency combs (BFCs) are promising quantum sources for large-scale and high-dimensional quantum information and networking systems. In this context, the spectral purity of individual frequency bins will be critical for realizing quantum networki ...
AMER PHYSICAL SOC2023
With the capabilities such as single-photon detection, time stamping and high-speed acquisition, time-resolved imaging based on single-photon avalanche diode (SPAD) detectors has found significant applications across diverse domains, including but not limi ...
A new paradigm for data science has emerged, with quantum data, quantum models, and quantum computational devices. This field, called quantum machine learning (QML), aims to achieve a speedup over traditional machine learning for data analysis. However, it ...
A crucial milestone in the field of quantum simulation and computation is to demonstrate that a quantum device can perform a computation task that is classically intractable. A key question is to identify setups that can achieve such goal within current te ...
IOP Publishing Ltd2023
,
Local Hamiltonians of fermionic systems on a lattice can be mapped onto local qubit Hamiltonians. Maintaining the lo-cality of the operators comes at the ex-pense of increasing the Hilbert space with auxiliary degrees of freedom. In order to retrieve the l ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2023
, ,
This article presents a two-times interleaved, loop-unrolled SAR analog-to-digital converter (ADC) operational from 300 down to 4.2 K. The 6-8-bit resolution and the sampling speed up to 1 GS/s are targeted at digitizing the multi-channel frequency-multipl ...
This work demonstrates the capabilities of an entangled photon-pair source at telecom wavelengths, based on a photonic integrated Si3N4 microresonator with monolithically integrated piezoelectric frequency tuning. Previously, frequency tuning of photon pai ...