Ultra-high quantum coherent and scalable superconducting circuit optomechanics, from topological lattices to quantum storage
Related publications (172)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the n ...
We introduce a protocol addressing the conformance test problem, which consists in determining whether a process under test conforms to a reference one. We consider a process to be characterized by the set of end products it produces, which is generated ac ...
We review the advancement of the research toward the design and implementation of quantum plenoptic cameras, radically novel 3D imaging devices that exploit both momentum–position entanglement and photon–number correlations to provide the typical refocusin ...
As quantum processors grow in complexity, attention is moving to the scaling prospects of the entire quantum computing system, including the classical support hardware. Recent results in high-fidelity control of individual spins in silicon, combined with d ...
We propose a scheme for universal quantum computing based on Kramers rare-earth ions. Their nuclear spins in the presence of a Zeeman-split electronic crystal field ground state act as "passive" qubits that store quantum information. The "active" qubits ar ...
The design of a large-scale quantum computer requires co-optimization of both the quantum bits (qubits) and their control electronics. This work presents the first systematic design of such a controller to simultaneously and accurately manipulate the state ...
The energy landscape of a single electron in a triple quantum dot can be tuned such that the energy separation between ground and excited states becomes a flat function of the relevant gate voltages. These so-called sweet spots are beneficial for charge co ...
Strong quantum correlations in matter are responsible for some of the most extraordinary properties of materials, from magnetism to high-temperature superconductivity, but their integration in quantum devices requires a strong, coherent coupling with photo ...
A key open question in quantum computing is whether quantum algorithms can potentially offer a significant advantage over classical algorithms for tasks of practical interest. Understanding the limits of classical computing in simulating quantum systems is ...
Quantum computers are invaluable tools to explore the properties of complex quantum systems. We show that dynamical localization of the quantum sawtooth map, a highly sensitive quantum coherent phenomenon, can be simulated on actual, small-scale quantum pr ...