Universal machine learning for the response of atomistic systems to external fields
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
The pyroresistive response of conductive polymer composites (CPCs) has attracted much interest because of its potential applications in many electronic devices requiring a significant responsiveness to changes in external physical parameters such as temper ...
Statistical (machine-learning, ML) models are more and more often used in computational chemistry as a substitute to more expensive ab initio and parametrizable methods. While the ML algorithms are capable of learning physical laws implicitly from data, ad ...
Machine learning has provided a means to accelerate early-stage drug discovery by combining molecule generation and filtering steps in a single architecture that leverages the experience and design preferences of medicinal chemists. However, designing mach ...
Accessing the thermal transport properties of glasses is a major issue for the design of production strategies of glass industry, as well as for the plethora of applications and devices where glasses are employed. From the computational standpoint, the che ...
Infrared and Raman spectroscopies are ubiquitous techniques employed in many experimental laboratories, thanks to their fast and non-destructive nature able to capture materials' features as spectroscopic fingerprints. Nevertheless, these measurements freq ...
Data-driven approaches have been applied to reduce the cost of accurate computational studies on materials, by using only a small number of expensive reference electronic structure calculations for a representative subset of the materials space, and using ...
Utilization of small molecules as passivation materials for perovskite solar cells (PSCs) has gained significant attention recently, with hundreds of small molecules demonstrating passivation effects. In this study, a high-accuracy machine learning model i ...
The present work proposes an extension to the approach of [Xi, C; et al. J. Chem. Theory Comput. 2022, 18, 6878] to calculate ion solvation free energies from first-principles (FP) molecular dynamics (MD) simulations of a hybrid solvation model. The approa ...
We demonstrate the use of both pixelated differential phase contrast (DPC) scanning transmission electron microscopy (STEM) and off-axis electron holography (EH) for the measurement of electric fields and assess the advantages and limitations of each techn ...