Publication

High-Stable Lead-Free Solar Cells Achieved by Surface Reconstruction of Quasi-2D Tin-Based Perovskites

Abstract

Tin halide perovskites are an appealing alternative to lead perovskites. However, owing to the lower redox potential of Sn(II)/Sn(IV), particularly under the presence of oxygen and water, the accumulation of Sn(IV) at the surface layer will negatively impact the device's performance and stability. To this end, this work has introduced a novel multifunctional molecule, 1,4-phenyldimethylammonium dibromide diamine (phDMADBr), to form a protective layer on the surface of Sn-based perovskite films. Strong interactions between phDMADBr and the perovskite surface improve electron transfer, passivating uncoordinated Sn(II), and fortify against water and oxygen. In situ grazing incidence wide-angle X-ray scattering (GIWAXS) analysis confirms the enhanced thermal stability of the quasi-2D phase, and hence the overall enhanced stability of the perovskite. Long-term stability in devices is achieved, retaining over 90% of the original efficiency for more than 200 hours in a 10% RH moisture N2 environment. These findings propose a new approach to enhance the operational stability of Sn-based perovskite devices, offering a strategy in advancing lead-free optoelectronic applications.|Reconstructing Sn-based perovskite's surface is able to form a protective gradient layer with exceptional electron transfer, defect passivation, and suppressed Sn(II) oxidation. This strategy enhances perovskite film's and device's environmental endurance even after prolonged exposure to moisture and ambient conditions, offering valuable insights for fabricating robust lead-free perovskite photovoltaic devices.image

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (20)
Perovskite solar cell
A perovskite solar cell (PSC) is a type of solar cell that includes a perovskite-structured compound, most commonly a hybrid organic–inorganic lead or tin halide-based material as the light-harvesting active layer. Perovskite materials, such as methylammonium lead halides and all-inorganic cesium lead halide, are cheap to produce and simple to manufacture. Solar-cell efficiencies of laboratory-scale devices using these materials have increased from 3.8% in 2009 to 25.
Thin-film solar cell
Thin-film solar cells are made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).
Dye-sensitized solar cell
A dye-sensitized solar cell (DSSC, DSC, DYSC or Grätzel cell) is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne (EPFL) until the publication of the first high efficiency DSSC in 1991.
Show more
Related publications (32)

Ultrafast carrier and quasiparticle dynamics in strongly confined perovskite nanoplatelets

Etienne Christophe Socie

Over the past decade, lead halide perovskites (LHPs) have received considerable attention thanks to their impressive optoelectronic properties. Today, LHP-based devices are one of the most efficient single-junction solar cells, with power-conversion effici ...
EPFL2022

Luminescent and electronic properties of perovskite solar cells

Brian Irving Carlsen

Perovskite solar cells show great promise to serve as an alternative for traditional silicon-based solar cells, however several problems present obstacles for their commercialization. Standard perovskite cells contain lead, which is toxic to humans and har ...
EPFL2022

Orientation‐Engineered Small‐Molecule Semiconductors as Dopant‐Free Hole Transporting Materials for Efficient and Stable Perovskite Solar Cells

Hong Zhang, Zhiwen Zhou, Miao Chen

Crystallized p-type small-molecule semiconductors have great potential as efficient and stable hole transporting materials (HTMs) for perovskite solar cells (PSCs) due to their relatively high hole mobility, good stability and tunable HOMOs depending on th ...
2021
Show more