Mitigation of frequency collisions in superconducting quantum processors
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Frequency-bin qubits get the best of time-bin and dual-rail encodings, but require external modulators and pulse shapers to build arbitrary states. Here, instead, the authors work directly on-chip by controlling the interference of biphoton amplitudes gene ...
Biphoton frequency combs (BFCs) are promising quantum sources for large-scale and high-dimensional quantum information and networking systems. In this context, the spectral purity of individual frequency bins will be critical for realizing quantum networki ...
The impressive pace of advance of quantum technology calls for robust and scalable techniques for the characterization and validation of quantum hardware. Quantum process tomography, the reconstruction of an unknown quantum channel from measurement data, r ...
Quantum computing has made significant progress in recent years, with Google and IBM releasing quantum computers with 72 and 50 qubits, respectively. Google has also achieved quantum supremacy with its 54-qubit device, and IBM has announced the release of ...
Quantum computation (QC) is one of the most challenging quantum technologies that promise to revolutionize data computation in the long-term by outperforming the classical supercomputers in specific applications. Errors will hamper this quantum revolution ...
An enduring challenge in constructing mechanical-oscillator-based hybrid quantum systems is to ensure engineered coupling to an auxiliary degree of freedom and maintain good mechanical isolation from the environment, that is, low quantum decoherence, consi ...
This work demonstrates the capabilities of an entangled photon-pair source at telecom wavelengths, based on a photonic integrated Si3N4 microresonator with monolithically integrated piezoelectric frequency tuning. Previously, frequency tuning of photon pai ...
Lanthanide atoms on surfaces are an exceptional platform for atomic-scale magnetic information storage. However, their potential as qubits remains unexplored due to the limited number of experimental setups that can coherently drive the spins of single ada ...
Quantum many-body control is a central milestone en route to harnessing quantum technologies. However, the exponential growth of the Hilbert space dimension with the number of qubits makes it challenging to classically simulate quantum many-body systems an ...
Superconducting materials present unique properties, which make a potential technological platform based on superconductors extremely appealing for a wide set of applications, both classical and not. Among these classes of materials, high-kinetic inductanc ...