Energy povertyEnergy poverty is lack of access to modern energy services. It refers to the situation of large numbers of people in developing countries and some people in developed countries whose well-being is negatively affected by very low consumption of energy, use of dirty or polluting fuels, and excessive time spent collecting fuel to meet basic needs. Today, 759 million people lack access to consistent electricity and 2.6 billion people use dangerous and inefficient cooking systems.
Availability heuristicThe availability heuristic, also known as availability bias, is a mental shortcut that relies on immediate examples that come to a given person's mind when evaluating a specific topic, concept, method, or decision. This heuristic, operating on the notion that, if something can be recalled, it must be important, or at least more important than alternative solutions not as readily recalled, is inherently biased toward recently acquired information. The mental availability of an action's consequences is positively related to those consequences' perceived magnitude.
Compton wavelengthThe Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons (a process known as Compton scattering). The standard Compton wavelength λ of a particle is given by while its frequency f is given by where h is the Planck constant, m is the particle's proper mass, and c is the speed of light.
Einstein's thought experimentsA hallmark of Albert Einstein's career was his use of visualized thought experiments (Gedankenexperiment) as a fundamental tool for understanding physical issues and for elucidating his concepts to others. Einstein's thought experiments took diverse forms. In his youth, he mentally chased beams of light. For special relativity, he employed moving trains and flashes of lightning to explain his most penetrating insights. For general relativity, he considered a person falling off a roof, accelerating elevators, blind beetles crawling on curved surfaces and the like.
Fine-tuned universeThe characterization of the universe as finely tuned suggests that the occurrence of life in the universe is very sensitive to the values of certain fundamental physical constants and that other values different from the observed ones are, for some reason, improbable. If the values of any of certain free parameters in contemporary physical theories had differed only slightly from those observed, the evolution of the universe would have proceeded very differently and life as it is understood may not have been possible.
Casimir effectIn quantum field theory, the Casimir effect (or Casimir force) is a physical force acting on the macroscopic boundaries of a confined space which arises from the quantum fluctuations of a field. It is named after the Dutch physicist Hendrik Casimir, who predicted the effect for electromagnetic systems in 1948. In the same year, Casimir together with Dirk Polder described a similar effect experienced by a neutral atom in the vicinity of a macroscopic interface, which is called the Casimir–Polder force.
Negative energyNegative energy is a concept used in physics to explain the nature of certain fields, including the gravitational field and various quantum field effects. Gravitational energy Gravitational energy, or gravitational potential energy, is the potential energy a massive object has because it is within a gravitational field. In classical mechanics, two or more masses always have a gravitational potential. Conservation of energy requires that this gravitational field energy is always negative, so that it is zero when the objects are infinitely far apart.
Wheeler's delayed-choice experimentWheeler's delayed-choice experiment describes a family of thought experiments in quantum physics proposed by John Archibald Wheeler, with the most prominent among them appearing in 1978 and 1984. These experiments are attempts to decide whether light somehow "senses" the experimental apparatus in the double-slit experiment it travels through, adjusting its behavior to fit by assuming an appropriate determinate state, or whether light remains in an indeterminate state, exhibiting both wave-like and particle-like behavior until measured.