Publication

A comprehensive physical model for the sensitivity of silicon heterojunction photovoltaic modules to water ingress

Abstract

Silicon heterojunction (SHJ)-solar modules-when encapsulated with ethylene vinyl acetate (EVA)-are known to be extremely sensitive to water ingress. The reason for this is, however, not clear. Here, we explain the root causes of this degradation mechanism specific to SHJ, proposing a detailed microscopic model. The role of EVA is instrumental in facilitating a faster water uptake in the module. However, additional observations led us to consider the role of glass in the degradation process. The moisture at the glass/encapsulant interface promotes a glass corrosion process, releasing sodium (Na) ions that, in combination with water, forms molecular Na hydroxide. This can percolate through the EVA, eventually reaching the solar cell. Na ions may act as recombination centers in the passivating layers or at the a-Si/c-Si interface, reducing the cell's passivation properties. Finally, we propose strategies to reinforce the water resistance and overall reliability of SHJ solar modules.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.