Magnon-Assisted Magnetization Reversal of Ni81Fe19 Nanostripes on Y3Fe5O12 with Different Interfaces
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Implanted medical devices (IMDs) have been widely developed to support the monitoring and recording of biological data inside the body or brain. Wirelessly powered IMDs, a subset of implantable electronics, have been proposed to eliminate the limitations r ...
The properties of a physical system only exist in relation to its environment. This thesis presents the development of a novel spin qubit scanning probe microscope operating over a wide range of environmental conditions. The qubit, which sits at the heart ...
Collective spin excitations propagating in magnetically ordered materials are called spin waves (SWs) or magnons. They are promising for low-power and beyond-CMOS information processing, which do not suffer from the ohmic losses. SWs in ferromagnets (antif ...
In the quest for controlling materials' properties, light as an external stimulus has a special place as it can create new states of matter and enable their ultrafast manipulation. In particular, spintronics, an exciting emergent field relying on the elect ...
Spin waves (SWs) are collective excitations of the spin ensemble in systems with magnetic order. In quantum mechanics, a SW is known as a magnon, which is the quasiparticle describing the quantized nature of these wave-like excitations. Magnonics is the re ...
A data storage medium (2) comprising a stacked plurality of layers (9), each layer composed of a layer material selected from a group comprising at least two different dielectric materials, adjacent layers being formed of different materials, and at least ...
Under magnetic fields, quantum magnets often undergo exotic phase transitions with various kinds of order. The discovery of a sequence of fractional magnetization plateaus in the Shastry-Sutherland compound SrCu2(BO3)(2) has played a central role in the hi ...
Free-electron lasers and high-harmonic-generation table-top systems are new sources of extreme-ultraviolet to hard X-ray photons, providing ultrashort pulses that are intense, coherent and tunable. They are enabling a broad range of nonlinear optical and s ...
Quantum spin liquids are highly entangled magnetic states with exotic properties. The S = 1/2 square-lattice Heisenberg model is one of the foundational models in frustrated magnetism with a predicted, but never observed, quantum spin liquid state. Isostru ...
Recent neutron-diffraction experiments in honeycomb CrI3 quasi-2D ferromagnets have evinced the existence of a gap at the Dirac point in their spin-wave spectra. The existence of this gap has been attributed to strong in-plane Dzyaloshinskii-Moriya or Kita ...