Publication

Differentially private multi-agent constraint optimization

Résumé

Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as vehicle routing, radio frequency assignments, and distributed scheduling of meetings. However, optimization scenarios may involve multiple agents wanting to protect their preferences' privacy. Researchers propose privacy-preserving algorithms for DCOPs that provide improved privacy protection through cryptographic primitives such as partial homomorphic encryption, secret-sharing, and secure multiparty computation. These privacy benefits come at the expense of high computational complexity. Moreover, such an approach does not constitute a rigorous privacy guarantee for optimization outcomes, as the result of the computation may compromise agents' preferences. In this work, we show how to achieve privacy, specifically Differential Privacy, by randomizing the solving process. In particular, we present P-Gibbs, which adapts the current state-of-the-art algorithm for DCOPs, namely SD-Gibbs, to obtain differential privacy guarantees with much higher computational efficiency. Experiments on benchmark problems such as Ising, graph-coloring, and meeting-scheduling show P-Gibbs' privacy and performance trade-off for varying privacy budgets and the SD-Gibbs algorithm. More concretely, we empirically show that P-Gibbs provides fair solutions for competitive privacy budgets.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (35)
Vie privée
vignette|droite|Dessin de Cham dans Le Charivari en 1868 : « Le portrait de ma femme que vous envoyez à l’Exposition ? Vous lui avez mis un grain de beauté sous le bras gauche, c’est de la vie privée. Je vous fais un procès ». La vie privée (du latin privatus, « séparé de, privé de ») est la capacité, pour une personne ou pour un groupe de personnes, de s'isoler afin de protéger son bien-être. Les limites de la vie privée ainsi que ce qui est considéré comme privé diffèrent selon les groupes, les cultures et les individus, selon les coutumes et les traditions bien qu'il existe toujours un certain tronc commun.
Calcul multipartite sécurisé
Le calcul multipartite sécurisé (en anglais, secure multi-party computation) est une branche de la cryptographie dont l'objectif est de permettre aux agents d'un réseau de communication de calculer conjointement une fonction sur leurs entrées, afin que les entrées restent privées et que le résultat soit exact. Cela peut être réalisé, par exemple, par transferts inconscient ou par chiffrement homomorphe. Contrairement aux constructions classiques en cryptographie, où l'attaquant est extérieur au système (à la manière d’un espion), l'attaquant fait ici partie des intervenants au sein du système.
Internet privacy
Internet privacy involves the right or mandate of personal privacy concerning the storage, re-purposing, provision to third parties, and display of information pertaining to oneself via the Internet. Internet privacy is a subset of data privacy. Privacy concerns have been articulated from the beginnings of large-scale computer sharing and especially relate to mass surveillance enabled by the emergence of computer technologies. Privacy can entail either personally identifiable information (PII) or non-PII information such as a site visitor's behaviour on a website.
Afficher plus
Publications associées (45)

Optimization Algorithms for Decentralized, Distributed and Collaborative Machine Learning

Anastasiia Koloskova

Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
EPFL2024

Bridging the gap between theoretical and practical privacy technologies for at-risk populations

Kasra Edalatnejadkhamene

With the pervasive digitalization of modern life, we benefit from efficient access to information and services. Yet, this digitalization poses severe privacy challenges, especially for special-needs individuals. Beyond being a fundamental human right, priv ...
EPFL2023

Thwarting Malicious Adversaries in Homomorphic Encryption Pipelines

Sylvain Chatel

Homomorphic Encryption (HE) enables computations to be executed directly on encrypted data. As such, it is an auspicious solution for protecting the confidentiality of sensitive data without impeding its usability. However, HE does not provide any guarante ...
EPFL2023
Afficher plus
MOOCs associés (1)
Humanitarian Action in the Digital Age
The first MOOC about responsible use of technology for humanitarians. Learn about technology and identify risks and opportunities when designing digital solutions.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.