COMMUNICATION LOWER BOUNDS AND OPTIMAL ALGORITHMS FOR MULTIPLE TENSOR-TIMES-MATRIX COMPUTATION
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a framework based on convex optimization and spectral regularization to perform learning when feature observations are multidimensional arrays (tensors). We give a mathematical characterization of spectral penalties for tensors and analyze a uni ...
Problems dealing with the design and the operations of gas transmission networks are challenging. The difficulty mainly arises from the simultaneous modeling of gas transmission laws and of the investment costs. The combination of the two yields a non-line ...
In this thesis, we consider commercial buildings with available heating, ventilation and air conditioning (HVAC) systems, and develop methods to assess and exploit their energy storage and production potential to collectively offer ancillary services to th ...
This paper summarizes a study undertaken to reveal potential challenges and opportunities for integrating optimization tools in net zero energy buildings (NZEB) design. The paper reviews current trends in simulation-based building performance optimization ...
An iterative procedure for the synthesis of sparse arrays radiating focused or shaped beampattern is presented. The algorithm consists in solving a sequence of weighted l(1) convex optimization problems. The method can thus be readily implemented and effic ...
Institute of Electrical and Electronics Engineers2012
This dissertation develops geometric variational models for different inverse problems in imaging that are ill-posed, designing at the same time efficient numerical algorithms to compute their solutions. Variational methods solve inverse problems by the fo ...
Image recovery in optical interferometry is an ill-posed nonlinear inverse problem arising from incomplete power spectrum and bi-spectrum measurements. We formulate a linear version of the problem for the order-3 tensor formed by the tensor product of the ...
We propose a new framework for the analysis of low- rank tensors which lies at the intersection of spectral graph theory and signal processing. As a first step, we present a new graph based low-rank decomposition which approximates the classical low-rank S ...
The Distributed Constraint Optimization (DCOP) framework can be used to model a wide range of optimization problems that are inherently distributed. A distributed optimization problem can be viewed as a problem distributed over a set of agents, where agent ...
We consider L1 -TV regularization of univariate signals with values on the real line or on the unit circle. While the real data space leads to a convex optimization problem, the problem is nonconvex for circle-valued data. In this paper, we deriv ...