**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Quantum mechanics

Summary

Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.
Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale.
Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to how accurately

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (70)

Related publications (100)

Loading

Loading

Loading

Related courses (287)

L'objectif de ce cours est de familiariser l'étudiant avec les concepts, les méthodes et les conséquences de la physique quantique. En particulier, le moment cinétique, la théorie de perturbation, les systèmes à plusieurs particules, les symétries, et les corrélations quantique seront traité

Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de prévoir quantitativement les conséquences de ces phénomènes avec des outils théoriques appropriés

Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les électrons et les liaisons chimiques, exemplifiées en chimie organique, sont présentées dans l'autre.

Related units (42)

Related concepts (582)

Physics

Physics is the natural science of matter, involving the study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Phy

Electron

The electron (Electron or beta-) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family

Photon

A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic

Related lectures (947)

This is an overview of a program of stochastic deformation of the mathematical tools of classical mechanics, in the Lagrangian and Hamiltonian approaches. It can also be regarded as a stochastic version of Geometric Mechanics.The main idea is to construct well defined probability measures strongly inspired by Feynman Path integral method in Quantum Mechanics. In contrast with other approaches, this deformation preserves the invariance under time reversal of the underlying classical (conservative) dynamical systems.

2012In this PhD thesis we deal with two mathematical problems arising from quantum mechanics. We consider a spinless non relativistic quantum particle whose configuration space is a two dimensional surface S. We also suppose that the particle feels the effect of an homogeneous magnetic field perpendicular to the surface S. In the first case S = R × SL1, the infinite cylinder of circumference L, corresponding to periodic boundary conditions, while in the second one S = R2. In both cases the particle feels the effect of an additional suitable potential. We are thus left with the study of two specific classes of Schrödinger operators. The operator of the first class generates the dynamics of the particle when it is submitted to an Anderson-type random potential, as well as to a non random potential confining the particle along the cylinder axis in an interval of length L. In this case we describe the spectrum and classify it by the quantum mechanical current carried by the corresponding eigenfunctions. We prove that there are spectral regions in which all the eigenvalues have an order one current with respect to L, and spectral regions where eigenvalues with order one current and eigenvalues with infinitesimal current with respect to L are intermixed. These results are relevant for the theory of the integer quantum Hall effect. The second Schrödinger operator class corresponds to the physical situation where the potential is the sum of a "local" potential and of a potential due to a weak constant electric field F. In this case we show that the resonant states, induced by the electric field, decay exponentially at a rate given by the imaginary part of the eigenvalues of some non self-adjoint operator. Moreover we prove an upper bound on this imaginary part that turns out to be of order exp(-1/F2) as F goes to zero. Therefore the lifetime of the resonant states is at least of order exp(-1/F2).

The formalism for non-Hermitian quantum systems sometimes blurs the underlying physics. We present a systematic study of the vielbeinlike formalism which transforms the Hilbert space bundles of non-Hermitian systems into the conventional ones, rendering the induced Hamiltonian to be Hermitian. In other words, any non-Hermitian Hamiltonian can be "transformed" into a Hermitian one without altering the physics. Thus we show how to find a reference frame (corresponding to Einstein's quantum elevator) in which a non-Hermitian system, equipped with a nontrivial Hilbert space metric, reduces to a Hermitian system within the standard formalism of quantum mechanics.