Augmenting locomotor perception by remapping tactile foot sensation to the back
Related publications (46)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Implantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to ...
Animals, including humans, exhibit a remarkable variety of complex behaviours. How the nervous system controls all these behaviours ranging from simple, stereotyped movements to flexible, adaptive actions is a central questions of neuroscience. One of the ...
Exoskeletons intended for partial assistance of walking should be able to follow the gait pattern of their users, via online adaptive control strategies rather than imposing predefined kinetic or kinematic profiles. NeuroMuscular Controllers (NMCs) are ada ...
Multi-polar stimulation protocols have been used in the past to increase the selectivity of electrical stimulation of the nervous system. Nonetheless, the number of possible multipolar stimulation protocols is prohibitively large and cannot be explored dur ...
The spinal cord is an elongated nervous structure that together with the brain forms the central nervous system. It relays sensory and motor information between the brain and the body, thus controlling most somatic and autonomic body functions. In recent y ...
Locomotion is based on a sophisticated interaction among the environment, the musculoskeletal system, the spinal cord, and the brain locomotor areas. Quality of life is strongly related to the proper capability of this movement. However, many pathologies, ...
Precise control of bionic limbs relies on robust decoding of motor commands from nerves or muscles signals and sensory feedback from artificial limbs to the nervous system by interfacing the afferent nerve pathways. Implantable devices for bidirectional co ...
Objective. Powered lower-limb prostheses relying on decoding motor intentions from non-invasive sensors, like electromyographic (EMG) signals, can significantly improve the quality of life of amputee subjects. However, the optimal combination of high decod ...
Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has ...
Motor learning allows animals, including human beings, to acquire skills that are es-sential for efficient interactions with the environment. This ability to learn new motor skills is of great practical relevance for daily-life activities (such as when lea ...