PentaquarkA pentaquark is a human-made subatomic particle, consisting of four quarks and one antiquark bound together; they are not known to occur naturally, or exist outside of experiments specifically carried out to create them. As quarks have a baryon number of + 1/3, and antiquarks of − 1/3, the pentaquark would have a total baryon number of 1, and thus would be a baryon. Further, because it has five quarks instead of the usual three found in regular baryons ( 'triquarks'), it is classified as an exotic baryon.
IsospinIn nuclear physics and particle physics, isospin (I) is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions of baryons and mesons. The name of the concept contains the term spin because its quantum mechanical description is mathematically similar to that of angular momentum (in particular, in the way it couples; for example, a proton–neutron pair can be coupled either in a state of total isospin 1 or in one of 0).
Compact Muon SolenoidThe Compact Muon Solenoid (CMS) experiment is one of two large general-purpose particle physics detectors built on the Large Hadron Collider (LHC) at CERN in Switzerland and France. The goal of the CMS experiment is to investigate a wide range of physics, including the search for the Higgs boson, extra dimensions, and particles that could make up dark matter. CMS is 21 metres long, 15 m in diameter, and weighs about 14,000 tonnes. Over 4,000 people, representing 206 scientific institutes and 47 countries, form the CMS collaboration who built and now operate the detector.
Large Hadron ColliderThe Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories, as well as more than 100 countries. It lies in a tunnel in circumference and as deep as beneath the France–Switzerland border near Geneva. The first collisions were achieved in 2010 at an energy of 3.
Quantum chromodynamicsIn theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics.
Strong interactionIn nuclear physics and particle physics, the strong interaction, which is also often called the strong force or strong nuclear force, is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the nuclear force. Most of the mass of a common proton or neutron is the result of the strong interaction energy; the individual quarks provide only about 1% of the mass of a proton.
Interstellar mediumIn astronomy, the interstellar medium (ISM) is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field.
Head-on collisionA head-on collision is a traffic collision where the front ends of two vehicles such as cars, trains, ships or planes hit each other when travelling in opposite directions, as opposed to a side collision or rear-end collision. With railways, a head-on collision occurs most often on a single line railway. This usually means that at least one of the trains has passed a signal at danger, or that a signalman has made a major error. Head-on collisions may also occur at junctions, for similar reasons.
Parton (particle physics)In particle physics, the parton model is a model of hadrons, such as protons and neutrons, proposed by Richard Feynman. It is useful for interpreting the cascades of radiation (a parton shower) produced from quantum chromodynamics (QCD) processes and interactions in high-energy particle collisions. Parton showers are simulated extensively in Monte Carlo event generators, in order to calibrate and interpret (and thus understand) processes in collider experiments.
Cosmic microwave backgroundThe cosmic microwave background (CMB, CMBR) is microwave radiation that fills all space in the observable universe. It is a remnant that provides an important source of data on the primordial universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object.