Topics in statistical physics of high-dimensional machine learning
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Blood pressure (BP) is a crucial indicator of cardiovascular health. Hypertension is a common life-threatening condition and a key factor of cardiovascular diseases (CVDs). Identifying abnormal BP fluctuations can allow for early detection and management o ...
We develop a principled approach to end-to-end learning in stochastic optimization. First, we show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map. Building on the insights of this an ...
Crop maps are crucial for agricultural monitoring and food management and can additionally support domain-specific applications, such as setting cold supply chain infrastructure in developing countries. Machine learning (ML) models, combined with freely-av ...
The monumental progress in the development of machine learning models has led to a plethora of applications with transformative effects in engineering and science. This has also turned the attention of the research community towards the pursuit of construc ...
In the current deep learning paradigm, the amount and quality of training data are as critical as the network architecture and its training details. However, collecting, processing, and annotating real data at scale is difficult, expensive, and time-consum ...
Neural network approaches to approximate the ground state of quantum hamiltonians require the numerical solution of a highly nonlinear optimization problem. We introduce a statistical learning approach that makes the optimization trivial by using kernel me ...
Self-supervised learning (SSL) models use only the intrinsic structure of a given signal, independent of its acoustic domain, to extract essential information from the input to an embedding space. This implies that the utility of such representations is no ...
Metal-based Laser Powder Bed Fusion (LPBF) has made fabricating intricate components easier. Yet, assessing part quality is inefficient, relying on costly Computed Tomography (CT) scans or time-consuming destructive tests. Also, intermittent inspection of ...
Recently there has been a surge of interest in understanding implicit regularization properties of iterative gradient-based optimization algorithms. In this paper, we study the statistical guarantees on the excess risk achieved by early-stopped unconstrain ...
Diagonal linear networks (DLNs) are a toy simplification of artificial neural networks; they consist in a quadratic reparametrization of linear regression inducing a sparse implicit regularization. In this paper, we describe the trajectory of the gradient ...