Greek mathematicsGreek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly attested from the late 7th century BC to the 6th century AD, around the shores of the Mediterranean. Greek mathematicians lived in cities spread over the entire region, from Anatolia to Italy and North Africa, but were united by Greek culture and the Greek language. The development of mathematics as a theoretical discipline and the use of proofs is an important difference between Greek mathematics and those of preceding civilizations.
Modus ponensIn propositional logic, modus ponens (ˈmoʊdəs_ˈpoʊnɛnz; MP), also known as modus ponendo ponens (Latin for "method of putting by placing"), implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q. P is true. Therefore Q must also be true." Modus ponens is closely related to another valid form of argument, modus tollens. Both have apparently similar but invalid forms such as affirming the consequent, denying the antecedent, and evidence of absence.
Modus tollensIn propositional logic, modus tollens (ˈmoʊdəs_ˈtɒlɛnz) (MT), also known as modus tollendo tollens (Latin for "method of removing by taking away") and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.
Prover9Prover9 is an automated theorem prover for first-order and equational logic developed by William McCune. Prover9 is the successor of the Otter theorem prover also developed by William McCune. Prover9 is noted for producing relatively readable proofs and having a powerful hints strategy. Prover9 is intentionally paired with Mace4, which searches for finite models and counterexamples. Both can be run simultaneously from the same input, with Prover9 attempting to find a proof, while Mace4 attempts to find a (disproving) counter-example.