Publication

Context-Aware Monitoring of Hand Motor Primitives in Daily Life Activities: A Pathway to Objectively Assess Rehabilitation of Patients with Upper-Limb Neurological Impairment

2024
EPFL thesis
Abstract

The hands, our silent performers in daily life, face overwhelming challenges when neurological impairments disrupt the simple tasks that compose our daily symphony. This thesis unveils a comprehensive framework for the objective monitoring of upper-limb rehabilitation, leveraging wearable sensors, an egocentric camera, and machine learning algorithms. It innovatively combines objective assessment tools with in-depth kinematic analysis to offer novel insights into hand motor primitive movement smoothness. This thesis focuses on granular motor movements, reaching, grasping, transporting and placing an object, since these motor primitive are building blocks of each simple and complex tasks.Previous approaches to assessing upper-limb impairments have predominantly utilized multiple Inertial Measurement Units (IMUs), which can often compromise patient comfort during therapies or in a home environment. Alternatively, the marker-based stereophotogrammetry system, while accurate, demands substantial operational space and lacks portability and ease of use. Additionally, existing studies tend to focus on specific movements or, at most, one of the hand motor primitives. In contrast, this thesis explores four hand motor primitives, filling a notable gap in the literature. To the best of the author's knowledge, no existing framework combines IMUs on the wrists with egocentric vision on the shoulder to enhance the context in the objective assessment of upper-limb hand motor primitives. Moreover, patients with upper-limb neuromotor impairments often depend on standardized clinical scores, which are limited by operator dependence and susceptibility to ceiling and floor effects, failing to capture the full quality of upper-limb movements accurately. Consequently, this thesis aims to bridge the gap between subjective and objective assessments of upper-limb impairments, proposing a novel approach to enhance the accuracy and personalization of rehabilitation strategies.Through a series of studies, the thesis validates the efficacy of the proposed system in real-world settings, emphasizing the importance of personalized, technology-assisted rehabilitation programs. Despite facing challenges such as data scarcity and the need for balanced patient datasets, the work lays a solid foundation for future advancements in the field, aiming to make rehabilitation more sensitive to subtle changes in motor recovery, accessible, accurate, and tailored to individual needs. Moreover, it complements traditional therapeutic strategies with technology-driven insights.Overall, this thesis lays the groundwork for future research directions, including enabling clinicians to detect subtle changes in the smoothness of hand movements throughout the rehabilitation process, aiding in the design of more effective and personalized rehabilitation programs.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Rehabilitation robotics
Rehabilitation robotics is a field of research dedicated to understanding and augmenting rehabilitation through the application of robotic devices. Rehabilitation robotics includes development of robotic devices tailored for assisting different sensorimotor functions(e.g. arm, hand, leg, ankle), development of different schemes of assisting therapeutic training, and assessment of sensorimotor performance (ability to move) of patient; here, robots are used mainly as therapy aids instead of assistive devices.
Fine motor skill
Fine motor skill (or dexterity) is the coordination of small muscles in movement with the eyes, hands and fingers. The complex levels of manual dexterity that humans exhibit can be related to the nervous system. Fine motor skills aid in the growth of intelligence and develop continuously throughout the stages of human development. Motor skills are movements and actions of the bone structures. Typically, they are categorised into two groups: gross motor skills and fine motor skills.
Induction motor
An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding. An induction motor can therefore be made without electrical connections to the rotor. An induction motor's rotor can be either wound type or squirrel-cage type. Three-phase squirrel-cage induction motors are widely used as industrial drives because they are self-starting, reliable, and economical.
Show more
Related publications (32)

Combination of Neurotechnologies Towards Personalized Neurorehabilitation for Stroke Patients

Claudia Bigoni

"Ensure healthy lives and promote well-being for all at all ages" is the third sustainable development goal for the United Nations Agenda of 2030. This doctoral thesis fully embodied this objective by targeting stroke, a leading cause of death and disabili ...
EPFL2023

Investigating the neuromechanical control of healthy gait modulation and pathological gaits observed in cerebral palsy using neuromuscular simulations

Andrea Di Russo

Locomotion is based on a sophisticated interaction among the environment, the musculoskeletal system, the spinal cord, and the brain locomotor areas. Quality of life is strongly related to the proper capability of this movement. However, many pathologies, ...
EPFL2023

Neurophysiological underpinnings of an intensive protocol for upper limb motor recovery in subacute and chronic stroke patients

Silvestro Micera, Matteo Vissani, Michael Lassi

ABS T R A C T BACKGROUND: Upper limb (UL) motor impairment following stroke is a leading cause of functional limitations in activities of daily living. Robot-assisted therapy supports rehabilitation, but how its efficacy and the underlying neural mechanism ...
Turin2023
Show more
Related MOOCs (16)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.