MXene Inks for High-Throughput Printing of Electronics
Related publications (41)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Additive manufacturing (AM) processes such as material extrusion and vat photopolymerization all require supports to print parts with overhang features. These additional supports using the same or different materials are a waste of materials since they nee ...
As the world moves further and further into the semiconductor era, the amount of waste generated from electronics ("e-waste") is increasing rapidly and unsustainably. Of particular note, alternatives to lead-based piezoelectric materials must be establishe ...
Functional printing is a versatile mass production method that has gained considerable scientific and industrial attention in the past few years. A wide range of electronics from passive circuit components (e.g., resistors and interconnects) to high-perfor ...
Precise packaging of nanoliter amounts of liquid in a microsystem is important for many biomedical applications. However, existing liquid encapsulation technologies have limitations in terms of liquid waste, evaporation, trapped bubbles, and liquid degrada ...
Customizable solar cells are required for aesthetic indoor and outdoor photovoltaic deployment as well as for the freedom of design of small and portable power supplies. We demonstrate that drop on demand inkjet printing can be used for the fabrication of ...
Sensors capable of detecting and classifying volatile organic compounds (VOC) have been gaining more attention by the advent of internet-of-things (IoT) enabled devices and integration of various sensing elements into hand-held and portable devices. The re ...
Bioelectronic and neuroprosthetic interfaces rely on implanted microelectrode arrays (MEAs) to interact with the human body. Printing techniques, such as inkjet and screen printing, are attractive methods for the manufacturing of MEAs because they allow fl ...
Novel metal-oxides (MOx) semiconductors for thin-film transistors (TFTs) are being developed as they can offer superior electric performances over organic-based counterparts. MOx TFTs processed on foil could be exploited in smart labels as RFID and NFC tag ...
3D printing is a powerful manufacturing technology for shaping materials into complex structures. While the palette of printable materials continues to expand, the rheological and chemical requisites for printing are not always easy to fulfill. Here, a uni ...
Printed electronics has promised to deliver low-cost, large-area and flexible electronics for mass-market applications for some time; however, so far one limiting factor has been device performance. Over the last decade, great progress has been made in ter ...