Object modelIn computing, object model has two related but distinct meanings: The properties of objects in general in a specific computer programming language, technology, notation or methodology that uses them. Examples are the object models of Java, the Component Object Model (COM), or Object-Modeling Technique (OMT). Such object models are usually defined using concepts such as class, generic function, message, inheritance, polymorphism, and encapsulation.
Formal verificationIn the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Standardized testA standardized test is a test that is administered and scored in a consistent, or "standard", manner. Standardized tests are designed in such a way that the questions and interpretations are consistent and are administered and scored in a predetermined, standard manner. Any test in which the same test is given in the same manner to all test takers, and graded in the same manner for everyone, is a standardized test. Standardized tests do not need to be high-stakes tests, time-limited tests, or multiple-choice tests.
Object-based languageThe term object-based language may be used in a technical sense to describe any programming language that uses the idea of encapsulating state and operations inside objects. Object-based languages need not support inheritance or subtyping, but those that do are also termed object-oriented. Object-based languages that do not support inheritance or subtyping are usually not considered to be true object-oriented languages.
PrologProlog is a logic programming language associated with artificial intelligence and computational linguistics. Prolog has its roots in first-order logic, a formal logic, and unlike many other programming languages, Prolog is intended primarily as a declarative programming language: the program logic is expressed in terms of relations, represented as facts and rules. A computation is initiated by running a query over these relations.
Intuitionistic logicIntuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L.
Z notationThe Z notation ˈzɛd is a formal specification language used for describing and modelling computing systems. It is targeted at the clear specification of computer programs and computer-based systems in general. In 1974, Jean-Raymond Abrial published "Data Semantics". He used a notation that would later be taught in the University of Grenoble until the end of the 1980s. While at EDF (Électricité de France), working with Bertrand Meyer, Abrial also worked on developing Z. The Z notation is used in the 1980 book Méthodes de programmation.
Dependence logicDependence logic is a logical formalism, created by Jouko Väänänen, which adds dependence atoms to the language of first-order logic. A dependence atom is an expression of the form , where are terms, and corresponds to the statement that the value of is functionally dependent on the values of . Dependence logic is a logic of imperfect information, like branching quantifier logic or independence-friendly logic (IF logic): in other words, its game-theoretic semantics can be obtained from that of first-order logic by restricting the availability of information to the players, thus allowing for non-linearly ordered patterns of dependence and independence between variables.
Intensional logicIntensional logic is an approach to predicate logic that extends first-order logic, which has quantifiers that range over the individuals of a universe (extensions), by additional quantifiers that range over terms that may have such individuals as their value (intensions). The distinction between intensional and extensional entities is parallel to the distinction between sense and reference. Logic is the study of proof and deduction as manifested in language (abstracting from any underlying psychological or biological processes).
Mock objectIn object-oriented programming, mock objects are simulated objects that mimic the behaviour of real objects in controlled ways, most often as part of a software testing initiative. A programmer typically creates a mock object to test the behaviour of some other object, in much the same way that a car designer uses a crash test dummy to simulate the dynamic behaviour of a human in vehicle impacts. The technique is also applicable in generic programming.