Quasi-likelihoodIn statistics, quasi-likelihood methods are used to estimate parameters in a statistical model when exact likelihood methods, for example maximum likelihood estimation, are computationally infeasible. Due to the wrong likelihood being used, quasi-likelihood estimators lose asymptotic efficiency compared to, e.g., maximum likelihood estimators. Under broadly applicable conditions, quasi-likelihood estimators are consistent and asymptotically normal. The asymptotic covariance matrix can be obtained using the so-called sandwich estimator.
HEPAHEPA (ˈhɛpə, high-efficiency particulate air) filter, also known as high-efficiency particulate absorbing filter and high-efficiency particulate arrestance filter, is an efficiency standard of air filters. Filters meeting the HEPA standard must satisfy certain levels of efficiency. Common standards require that a HEPA air filter must remove—from the air that passes through—at least 99.95% (ISO, European Standard) or 99.97% (ASME, U.S. DOE) of particles whose diameter is equal to 0.
Law of total expectationThe proposition in probability theory known as the law of total expectation, the law of iterated expectations (LIE), Adam's law, the tower rule, and the smoothing theorem, among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then i.e., the expected value of the conditional expected value of given is the same as the expected value of .
Truncated normal distributionIn probability and statistics, the truncated normal distribution is the probability distribution derived from that of a normally distributed random variable by bounding the random variable from either below or above (or both). The truncated normal distribution has wide applications in statistics and econometrics. Suppose has a normal distribution with mean and variance and lies within the interval . Then conditional on has a truncated normal distribution. Its probability density function, , for , is given by and by otherwise.
Law of total varianceIn probability theory, the law of total variance or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, states that if and are random variables on the same probability space, and the variance of is finite, then In language perhaps better known to statisticians than to probability theorists, the two terms are the "unexplained" and the "explained" components of the variance respectively (cf. fraction of variance unexplained, explained variation).
Method of conditional probabilitiesIn mathematics and computer science, the probabilistic method is used to prove the existence of mathematical objects with desired combinatorial properties. The proofs are probabilistic — they work by showing that a random object, chosen from some probability distribution, has the desired properties with positive probability. Consequently, they are nonconstructive — they don't explicitly describe an efficient method for computing the desired objects.
Donsker's theoremIn probability theory, Donsker's theorem (also known as Donsker's invariance principle, or the functional central limit theorem), named after Monroe D. Donsker, is a functional extension of the central limit theorem. Let be a sequence of independent and identically distributed (i.i.d.) random variables with mean 0 and variance 1. Let . The stochastic process is known as a random walk. Define the diffusively rescaled random walk (partial-sum process) by The central limit theorem asserts that converges in distribution to a standard Gaussian random variable as .