Introduction to the mathematics of general relativityThe mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion.
Parallel universes in fictionA parallel universe, also known as a alternate universe, parallel world, or alternate reality, is a hypothetical self-contained plane of existence, co-existing with one's own. The sum of all potential parallel universes that constitute reality is often called a "multiverse". While the five terms are generally synonymous and can be used interchangeably in most cases, there is sometimes an additional connotation implied with the term "alternate universe/reality" that implies that the reality is a variant of our own, with some overlap with the similarly named alternate history.
Time geographyTime geography or time-space geography is an evolving transdisciplinary perspective on spatial and temporal processes and events such as social interaction, ecological interaction, social and environmental change, and biographies of individuals. Time geography "is not a subject area per se", but rather an integrative ontological framework and visual language in which space and time are basic dimensions of analysis of dynamic processes.
WormholeA wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations. A wormhole can be visualized as a tunnel with two ends at separate points in spacetime (i.e., different locations, different points in time, or both). Wormholes are consistent with the general theory of relativity, but whether wormholes actually exist remains to be seen.
MultiverseThe multiverse is the hypothetical set of all universes. Together, these universes are presumed to comprise everything that exists: the entirety of space, time, matter, energy, information, and the physical laws and constants that describe them. The different universes within the multiverse are called "parallel universes", "other universes", "alternate universes", or "many worlds". One common assumption is that the multiverse is a "patchwork quilt of separate universes all bound by the same laws of physics.
Whitney embedding theoremIn mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney: The strong Whitney embedding theorem states that any smooth real m-dimensional manifold (required also to be Hausdorff and second-countable) can be smoothly embedded in the real 2m-space, \R^{2m}, if m > 0. This is the best linear bound on the smallest-dimensional Euclidean space that all m-dimensional manifolds embed in, as the real projective spaces of dimension m cannot be embedded into real (2m − 1)-space if m is a power of two (as can be seen from a characteristic class argument, also due to Whitney).
Cotangent spaceIn differential geometry, the cotangent space is a vector space associated with a point on a smooth (or differentiable) manifold ; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, is defined as the dual space of the tangent space at , , although there are more direct definitions (see below). The elements of the cotangent space are called cotangent vectors or tangent covectors. All cotangent spaces at points on a connected manifold have the same dimension, equal to the dimension of the manifold.