Concept

# Cotangent space

Summary
In differential geometry, the cotangent space is a vector space associated with a point x on a smooth (or differentiable) manifold \mathcal M; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, T^*_x!\mathcal M is defined as the dual space of the tangent space at x, T_x\mathcal M, although there are more direct definitions (see below). The elements of the cotangent space are called cotangent vectors or tangent covectors. Properties All cotangent spaces at points on a connected manifold have the same dimension, equal to the dimension of the manifold. All the cotangent spaces of a manifold can be "glued together" (i.e. unioned and endowed with a topology) to form a new differentiable manifold of twice the dimension, the cotangent bundle of the manifold. The tangent space and the cotangent space at a point are both real vector spaces of the same dimension and t
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Related people

Related units