Inheritance (object-oriented programming)In object-oriented programming, inheritance is the mechanism of basing an object or class upon another object (prototype-based inheritance) or class (class-based inheritance), retaining similar implementation. Also defined as deriving new classes (sub classes) from existing ones such as super class or base class and then forming them into a hierarchy of classes. In most class-based object-oriented languages like C++, an object created through inheritance, a "child object", acquires all the properties and behaviors of the "parent object", with the exception of: constructors, destructors, overloaded operators and friend functions of the base class.
Object (computer science)In computer science, an object can be a variable, a data structure, a function, or a method. As regions of memory, objects contain a value and are referenced by identifiers. In the object-oriented programming paradigm, an object can be a combination of variables, functions, and data structures; in particular in class-based variations of the paradigm, an object refers to a particular instance of a class. In the relational model of database management, an object can be a table or column, or an association between data and a database entity (such as relating a person's age to a specific person).
Dynamical systemIn mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured.
Systems modelingSystems modeling or system modeling is the interdisciplinary study of the use of models to conceptualize and construct systems in business and IT development. A common type of systems modeling is function modeling, with specific techniques such as the Functional Flow Block Diagram and IDEF0. These models can be extended using functional decomposition, and can be linked to requirements models for further systems partition.
SystemA system is a group of interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment, is described by its boundaries, structure and purpose and is expressed in its functioning. Systems are the subjects of study of systems theory and other systems sciences. Systems have several common properties and characteristics, including structure, function(s), behavior and interconnectivity.
Model-driven engineeringModel-driven engineering (MDE) is a software development methodology that focuses on creating and exploiting domain models, which are conceptual models of all the topics related to a specific problem. Hence, it highlights and aims at abstract representations of the knowledge and activities that govern a particular application domain, rather than the computing (i.e. algorithmic) concepts. MDE is a subfield of a software design approach referred as round-trip engineering.
Business simulationBusiness simulation or corporate simulation is simulation used for business training, education or analysis. It can be scenario-based or numeric-based. Most business simulations are used for business acumen training and development. Learning objectives include: strategic thinking, decision making, problem solving, financial analysis, market analysis, operations, teamwork and leadership. The business gaming community seems lately to have adopted the term business simulation game instead of just gaming or just simulation.
Software engineeringSoftware engineering is an engineering-based approach to software development. A software engineer is a person who applies the engineering design process to design, develop, maintain, test, and evaluate computer software. The term programmer is sometimes used as a synonym, but may emphasize software implementation over design and can also lack connotations of engineering education or skills. Engineering techniques are used to inform the software development process, which involves the definition, implementation, assessment, measurement, management, change, and improvement of the software life cycle process itself.
Complex systemA complex system is a system composed of many components which may interact with each other. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication systems, complex software and electronic systems, social and economic organizations (like cities), an ecosystem, a living cell, and ultimately the entire universe.
Modeling and simulationModeling and simulation (M&S) is the use of models (e.g., physical, mathematical, behavioral, or logical representation of a system, entity, phenomenon, or process) as a basis for simulations to develop data utilized for managerial or technical decision making. In the computer application of modeling and simulation a computer is used to build a mathematical model which contains key parameters of the physical model. The mathematical model represents the physical model in virtual form, and conditions are applied that set up the experiment of interest.