Effective minimal threshold models of neuronal activity
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational ...
The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong i ...
The brain is a complex biological system composed of a multitude of microscopic processes, which together give rise to computational abilities observed in everyday behavior. Neuronal modeling, consisting of models of single neurons and neuronal networks at ...
Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learnin ...
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than roden ...
Random networks of integrate-and-fire neurons with strong current-based synapse scan, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze ...
Cortical neurons continuously transform sets of incoming spike trains into output spike trains. This input-output transformation is referred to as single-neuron computation and constitutes one of the most fundamental process in the brain. A deep understand ...
To appreciate how neural circuits in the brain control behaviors, we must identify how the neurons comprising the circuit are connected. Neuronal connectivity is difficult to determine experimentally, whereas neuronal activity can often be readily measured ...
Uniform random sparse network architectures are ubiquitous in computational neuroscience, but the implicit hypothesis that they are a good representation of real neuronal networks has been met with skepticism. Here we used two experimental data sets, a stu ...
Nerve cells in the brain generate sequences of action potentials with a complex statistics. Theoretical attempts to understand this statistics were largely limited to the case of a temporally uncorrelated input (Poissonian shot noise) from the neurons in t ...