Optimization problemIn mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.
CommunicationCommunication is usually defined as the transmission of information. The term can also refer to the message itself, or the field of inquiry studying these transmissions, also known as communication studies. The precise definition of communication is disputed. Controversial issues are whether unintentional or failed transmissions are included and whether communication does not just transmit meaning but also create it. Models of communication aim to provide a simplified overview of its main components and their interaction.
Electric power transmissionElectric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.
Combinatorial optimizationCombinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead.
Greedy algorithmA greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time. For example, a greedy strategy for the travelling salesman problem (which is of high computational complexity) is the following heuristic: "At each step of the journey, visit the nearest unvisited city.
Convex optimizationConvex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, whereas mathematical optimization is in general NP-hard.
Network theoryIn mathematics, computer science and network science, network theory is a part of graph theory. It defines networks as graphs where the nodes or edges possess attributes. Network theory analyses these networks over the symmetric relations or asymmetric relations between their (discrete) components. Network theory has applications in many disciplines, including statistical physics, particle physics, computer science, electrical engineering, biology, archaeology, linguistics, economics, finance, operations research, climatology, ecology, public health, sociology, psychology, and neuroscience.
Mathematical optimizationMathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.
Average costIn economics, average cost or unit cost is equal to total cost (TC) divided by the number of units of a good produced (the output Q): Average cost has strong implication to how firms will choose to price their commodities. Firms’ sale of commodities of certain kind is strictly related to the size of the certain market and how the rivals would choose to act. Short-run costs are those that vary with almost no time lagging. Labor cost and the cost of raw materials are short-run costs, but physical capital is not.
Models of communicationModels of communication are simplified representations of the process of communication. Most models try to describe both verbal and non-verbal communication and often understand it as an exchange of messages. Their function is to give a compact overview of the complex process of communication. This helps researchers formulate hypotheses, apply communication-related concepts to real-world cases, and test predictions. Despite their usefulness, many models are criticized based on the claim that they are too simple because they leave out essential aspects.