Entropy codingIn information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have expected code length greater or equal to the entropy of the source. More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies , where is the number of symbols in a code word, is the coding function, is the number of symbols used to make output codes and is the probability of the source symbol.
Rate–distortion theoryRate–distortion theory is a major branch of information theory which provides the theoretical foundations for lossy data compression; it addresses the problem of determining the minimal number of bits per symbol, as measured by the rate R, that should be communicated over a channel, so that the source (input signal) can be approximately reconstructed at the receiver (output signal) without exceeding an expected distortion D. Rate–distortion theory gives an analytical expression for how much compression can be achieved using lossy compression methods.
Information theoryInformation theory is the mathematical study of the quantification, storage, and communication of information. The field was originally established by the works of Harry Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in the 1940s. The field, in applied mathematics, is at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, and electrical engineering. A key measure in information theory is entropy.
Low (complexity)In computational complexity theory, a language B (or a complexity class B) is said to be low for a complexity class A (with some reasonable relativized version of A) if AB = A; that is, A with an oracle for B is equal to A. Such a statement implies that an abstract machine which solves problems in A achieves no additional power if it is given the ability to solve problems in B at unit cost. In particular, this means that if B is low for A then B is contained in A.
Reliability (computer networking)In computer networking, a reliable protocol is a communication protocol that notifies the sender whether or not the delivery of data to intended recipients was successful. Reliability is a synonym for assurance, which is the term used by the ITU and ATM Forum. Reliable protocols typically incur more overhead than unreliable protocols, and as a result, function more slowly and with less scalability. This often is not an issue for unicast protocols, but it may become a problem for reliable multicast protocols.
Code rateIn telecommunication and information theory, the code rate (or information rate) of a forward error correction code is the proportion of the data-stream that is useful (non-redundant). That is, if the code rate is for every k bits of useful information, the coder generates a total of n bits of data, of which are redundant. If R is the gross bit rate or data signalling rate (inclusive of redundant error coding), the net bit rate (the useful bit rate exclusive of error correction codes) is .
Complexity classIn computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory. In general, a complexity class is defined in terms of a type of computational problem, a model of computation, and a bounded resource like time or memory. In particular, most complexity classes consist of decision problems that are solvable with a Turing machine, and are differentiated by their time or space (memory) requirements.
Retransmission (data networks)Retransmission, essentially identical with automatic repeat request (ARQ), is the resending of packets which have been either damaged or lost. Retransmission is one of the basic mechanisms used by protocols operating over a packet switched computer network to provide reliable communication (such as that provided by a reliable byte stream, for example TCP). Such networks are usually "unreliable", meaning they offer no guarantees that they will not delay, damage, or lose packets, or deliver them out of order.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
P (complexity)In computational complexity theory, P, also known as PTIME or DTIME(nO(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time. Cobham's thesis holds that P is the class of computational problems that are "efficiently solvable" or "tractable". This is inexact: in practice, some problems not known to be in P have practical solutions, and some that are in P do not, but this is a useful rule of thumb.