ConsistencyIn classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead.
Quantization (signal processing)Quantization, in mathematics and digital signal processing, is the process of mapping input values from a large set (often a continuous set) to output values in a (countable) smaller set, often with a finite number of elements. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms.
Proof theoryProof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.
AliasingIn signal processing and related disciplines, aliasing is the overlapping of frequency components resulting from a sample rate below the Nyquist frequency. This overlap results in distortion or artifacts when the signal is reconstructed from samples which causes the reconstructed signal to differ from the original continuous signal. Aliasing that occurs in signals sampled in time, for instance in digital audio or the stroboscopic effect, is referred to as temporal aliasing. Aliasing in spatially sampled signals (e.
Rate–distortion theoryRate–distortion theory is a major branch of information theory which provides the theoretical foundations for lossy data compression; it addresses the problem of determining the minimal number of bits per symbol, as measured by the rate R, that should be communicated over a channel, so that the source (input signal) can be approximately reconstructed at the receiver (output signal) without exceeding an expected distortion D. Rate–distortion theory gives an analytical expression for how much compression can be achieved using lossy compression methods.
BandlimitingBandlimiting refers to a process which reduces the energy of a signal to an acceptably low level outside of a desired frequency range. Bandlimiting is an essential part of many applications in signal processing and communications. Examples include controlling interference between radio frequency communications signals, and managing aliasing distortion associated with sampling for digital signal processing. A bandlimited signal is, strictly speaking, a signal with zero energy outside of a defined frequency range.
SignalIn signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The IEEE Transactions on Signal Processing includes audio, video, speech, , sonar, and radar as examples of signals. A signal may also be defined as observable change in a quantity over space or time (a time series), even if it does not carry information.
Reconstruction filterIn a mixed-signal system (analog and digital), a reconstruction filter, sometimes called an anti-imaging filter, is used to construct a smooth analog signal from a digital input, as in the case of a digital to analog converter (DAC) or other sampled data output device. The sampling theorem describes why the input of an ADC requires a low-pass analog electronic filter, called the anti-aliasing filter: the sampled input signal must be bandlimited to prevent aliasing (here meaning waves of higher frequency being recorded as a lower frequency).
Hilbert's second problemIn mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that the arithmetic is consistent – free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in , which include a second order completeness axiom. In the 1930s, Kurt Gödel and Gerhard Gentzen proved results that cast new light on the problem. Some feel that Gödel's theorems give a negative solution to the problem, while others consider Gentzen's proof as a partial positive solution.
Hilbert's programIn mathematics, Hilbert's program, formulated by German mathematician David Hilbert in the early 1920s, was a proposed solution to the foundational crisis of mathematics, when early attempts to clarify the foundations of mathematics were found to suffer from paradoxes and inconsistencies. As a solution, Hilbert proposed to ground all existing theories to a finite, complete set of axioms, and provide a proof that these axioms were consistent.