**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Networked Slepian-Wolf: Theory, Algorithms and Scaling Laws

Abstract

Consider a set of correlated sources located at the nodes of a network, and a set of sinks that are the destinations for some of the sources. The minimization of cost functions which are the product of a function of the rate and a function of the path weight is considered, for both the data-gathering scenario, which is relevant in sensor networks, and general traffic matrices, relevant for general networks. The minimization is achieved by jointly optimizing a) the transmission structure, which is shown to consist in general of a superposition of trees, and b) the rate allocation across the source nodes, which is done by Slepian-Wolf coding. The overall minimization can be achieved in two concatenated steps. First, the optimal transmission structure is found, which in general amounts to finding a Steiner tree, and second, the optimal rate allocation is obtained by solving an optimization problem with cost weights determined by the given optimal transmission structure, and with linear constraints given by the Slepian-Wolf rate region. For the case of data gathering, the optimal transmission structure is fully characterized and a closed-form solution for the optimal rate allocation is provided. For the general case of an arbitrary traffic matrix, the problem of finding the optimal transmission structure is NP-complete. For large networks, in some simplified scenarios, the total costs associated with Slepian-Wolf coding and explicit communication (conditional encoding based on explicitly communicated side information) are compared. Finally, the design of decentralized algorithms for the optimal rate allocation is analyzed.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (29)

Related concepts (39)

Related publications (80)

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Digital Signal Processing [retired]

The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a

Duality (optimization)

In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then the dual is a maximization problem (and vice versa). Any feasible solution to the primal (minimization) problem is at least as large as any feasible solution to the dual (maximization) problem.

Data analysis

Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains. In today's business world, data analysis plays a role in making decisions more scientific and helping businesses operate more effectively.

Optimization problem

In mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.

Colin Neil Jones, Yuning Jiang, Yingzhao Lian, Xinliang Dai

This paper presents a novel distributed approach for solving AC power flow (PF) problems. The optimization problem is reformulated into a distributed form using a communication structure corresponding to a hypergraph, by which complex relationships between ...

Anna Timonina-Farkas, René Yves Glogg

Years of globalization, outsourcing and cost cutting have increased supply chain vulnerability calling for more effective risk mitigation strategies. In our research, we analyze supply chain disruptions in a production setting. Using a bilevel optimization ...

We develop new tools to study landscapes in nonconvex optimization. Given one optimization problem, we pair it with another by smoothly parametrizing the domain. This is either for practical purposes (e.g., to use smooth optimization algorithms with good g ...