Summary
In mathematical optimization theory, duality or the duality principle is the principle that optimization problems may be viewed from either of two perspectives, the primal problem or the dual problem. If the primal is a minimization problem then the dual is a maximization problem (and vice versa). Any feasible solution to the primal (minimization) problem is at least as large as any feasible solution to the dual (maximization) problem. Therefore, the solution to the primal is an upper bound to the solution of the dual, and the solution of the dual is a lower bound to the solution of the primal. This fact is called weak duality. In general, the optimal values of the primal and dual problems need not be equal. Their difference is called the duality gap. For convex optimization problems, the duality gap is zero under a constraint qualification condition. This fact is called strong duality. Usually the term "dual problem" refers to the Lagrangian dual problem but other dual problems are used – for example, the Wolfe dual problem and the Fenchel dual problem. The Lagrangian dual problem is obtained by forming the Lagrangian of a minimization problem by using nonnegative Lagrange multipliers to add the constraints to the objective function, and then solving for the primal variable values that minimize the original objective function. This solution gives the primal variables as functions of the Lagrange multipliers, which are called dual variables, so that the new problem is to maximize the objective function with respect to the dual variables under the derived constraints on the dual variables (including at least the nonnegativity constraints). In general given two dual pairs of separated locally convex spaces and and the function , we can define the primal problem as finding such that In other words, if exists, is the minimum of the function and the infimum (greatest lower bound) of the function is attained. If there are constraint conditions, these can be built into the function by letting where is a suitable function on that has a minimum 0 on the constraints, and for which one can prove that .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related MOOCs (7)
Optimization: principles and algorithms - Linear optimization
Introduction to linear optimization, duality and the simplex algorithm.
Optimization: principles and algorithms - Linear optimization
Introduction to linear optimization, duality and the simplex algorithm.
Optimization: principles and algorithms - Network and discrete optimization
Introduction to network optimization and discrete optimization
Show more