Quantum ghost imaging can be an important tool in making optical measurements. One of the most useful aspects of ghost imaging is the unique ability to correlate two sets of independently collected information. We aim to use the principles of ghost imaging ...
A dual-shot technique based on the field basis addition of two statistically independent speckle patterns is developed to recover an input polarization through a scattering layer. It is proposed theoretically, and demonstrated both numerically and experime ...
The control of movement and orientation of gas-phase molecules has become the focus of many research areas in molecular physics. Here, ND3 molecules are polarized in a segmented, curved electrostatic guide and adiabatically aligned inside a rotatable mass ...
Photonics integrated circuits are a promising solution for the growing demands of data transmission and future system-on-chip technologies. Within this context, nonlinear optical interactions offer unique opportunities for all-optical processing, sampling, ...
We demonstrate the use of both pixelated differential phase contrast (DPC) scanning transmission electron microscopy (STEM) and off-axis electron holography (EH) for the measurement of electric fields and assess the advantages and limitations of each techn ...
This thesis presents the development, construction, and benchmark of an experimental platform that combines cold fermionic 6Li atoms with locally controllable light-matter interactions. To enable local control, a new device, the cavity-microscope, was crea ...
Advancing quantum technologies depends on the precise control of individual quantum systems, the so-called qubits, and the exploitation of their quantum properties. Nowadays, expanding the number of qubits to be entangled is at the core of the developments ...
Plasmonic photochemistry has a large potential to replace energy-intensive chemical processes with low-temperature, low-pressure light-driven chemical reactions. Plasmonic nanostructures have emerged as promising photocatalysts with exceptional and tunable ...
The quest to improve transparent conductors balances two key goals: increasing electrical conductivity and increasing optical transparency. To improve both simultaneously is hindered by the physical limitation that good metals with high electrical conducti ...
The response of simple plasmonic nanorods to polarized illumination is studied in detail. Depending on the orientation of that polarization with respect to the symmetry axes of the nanostructure, a chiral response can occur, which can be analyzed through a ...