Free electron modelIn solid-state physics, the free electron model is a quantum mechanical model for the behaviour of charge carriers in a metallic solid. It was developed in 1927, principally by Arnold Sommerfeld, who combined the classical Drude model with quantum mechanical Fermi–Dirac statistics and hence it is also known as the Drude–Sommerfeld model.
Spectrum (functional analysis)In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if either has no set-theoretic inverse; or the set-theoretic inverse is either unbounded or defined on a non-dense subset. Here, is the identity operator. By the closed graph theorem, is in the spectrum if and only if the bounded operator is non-bijective on .
Decomposition of spectrum (functional analysis)The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts: a point spectrum, consisting of the eigenvalues of ; a continuous spectrum, consisting of the scalars that are not eigenvalues but make the range of a proper dense subset of the space; a residual spectrum, consisting of all other scalars in the spectrum.