Memory coherenceMemory coherence is an issue that affects the design of computer systems in which two or more processors or cores share a common area of memory. In a uniprocessor system (whereby, in today's terms, there exists only one core), there is only one processing element doing all the work and therefore only one processing element that can read or write from/to a given memory location. As a result, when a value is changed, all subsequent read operations of the corresponding memory location will see the updated value, even if it is cached.
Central processing unitA central processing unit (CPU)—also called a central processor or main processor—is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs). The form, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged.
Manycore processorManycore processors are special kinds of multi-core processors designed for a high degree of parallel processing, containing numerous simpler, independent processor cores (from a few tens of cores to thousands or more). Manycore processors are used extensively in embedded computers and high-performance computing. Manycore processors are distinct from multi-core processors in being optimized from the outset for a higher degree of explicit parallelism, and for higher throughput (or lower power consumption) at the expense of latency and lower single-thread performance.
Physics processing unitA physics processing unit (PPU) is a dedicated microprocessor designed to handle the calculations of physics, especially in the physics engine of video games. It is an example of hardware acceleration. Examples of calculations involving a PPU might include rigid body dynamics, soft body dynamics, collision detection, fluid dynamics, hair and clothing simulation, finite element analysis, and fracturing of objects. The idea is having specialized processors offload time-consuming tasks from a computer's CPU, much like how a GPU performs graphics operations in the main CPU's place.
Working memoryWorking memory is a cognitive system with a limited capacity that can hold information temporarily. It is important for reasoning and the guidance of decision-making and behavior. Working memory is often used synonymously with short-term memory, but some theorists consider the two forms of memory distinct, assuming that working memory allows for the manipulation of stored information, whereas short-term memory only refers to the short-term storage of information.
No instruction set computingNo instruction set computing (NISC) is a computing architecture and compiler technology for designing highly efficient custom processors and hardware accelerators by allowing a compiler to have low-level control of hardware resources. NISC is a statically scheduled horizontal nanocoded architecture (SSHNA). The term "statically scheduled" means that the operation scheduling and Hazard handling are done by a compiler. The term "horizontal nanocoded" means that NISC does not have any predefined instruction set or microcode.
Complex instruction set computerA complex instruction set computer (CISC ˈsɪsk) is a computer architecture in which single instructions can execute several low-level operations (such as a load from memory, an arithmetic operation, and a memory store) or are capable of multi-step operations or addressing modes within single instructions. The term was retroactively coined in contrast to reduced instruction set computer (RISC) and has therefore become something of an umbrella term for everything that is not RISC, where the typical differentiating characteristic is that most RISC designs use uniform instruction length for almost all instructions, and employ strictly separate load and store instructions.
Register fileA register file is an array of processor registers in a central processing unit (CPU). Register banking is the method of using a single name to access multiple different physical registers depending on the operating mode. Modern integrated circuit-based register files are usually implemented by way of fast static RAMs with multiple ports. Such RAMs are distinguished by having dedicated read and write ports, whereas ordinary multiported SRAMs will usually read and write through the same ports.
Memory-mapped fileA memory-mapped file is a segment of virtual memory that has been assigned a direct byte-for-byte correlation with some portion of a file or file-like resource. This resource is typically a file that is physically present on disk, but can also be a device, shared memory object, or other resource that the operating system can reference through a . Once present, this correlation between the file and the memory space permits applications to treat the mapped portion as if it were primary memory.
Comparison of instruction set architecturesAn instruction set architecture (ISA) is an abstract model of a computer, also referred to as computer architecture. A realization of an ISA is called an implementation. An ISA permits multiple implementations that may vary in performance, physical size, and monetary cost (among other things); because the ISA serves as the interface between software and hardware. Software that has been written for an ISA can run on different implementations of the same ISA.