Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The manipulation of living biological cells in microfluidic channels by a combination of negative dielectrophoretic barriers and pressure-driven flows is widely employed in lab-on-a-chip systems. However, electric fields in conducting media induce Joule heating. This study investigates if the local temperatures reached under typical experimental conditions in miniaturized systems cause a potential risk for hyperthermic stress or cell damage. Two methods of optical in situ temperature detection have been tested and compared: (i) the exposure of the thermo-dependent fluorescent dye Rhodamine B to heat sources situated in microfluidic channels, and (ii) the use of thermoprecipitating N-alkyl-substituted acrylamide polymers as temperature threshold probes. Two-dimensional images of temperature distributions in the vicinity of active negative dielectrophoresis (nDEP)- barriers have been obtained and local temperature variations of more than 20 degrees C have been observed at the electrode edges. Heat propagation via both buffer and channel walls lead to significant temperature increases within a perimeter of 100 mu m and more. These data indicate that power dissipation has to be taken into account when experiments at physiological temperatures are planned.
Pierluigi Bruzzone, Kamil Sedlák, Nikolay Bykovskiy, Ortensia Dicuonzo
Silvestro Micera, Solaiman Shokur, Outman Akouissi, Jonathan Louis Muheim, Francesco Iberite