TimeTime is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to compare the duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience. Time is often referred to as a fourth dimension, along with three spatial dimensions.
Time complexityIn computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.
Time travelTime travel is the hypothetical activity of traveling into the past or future. Time travel is a widely recognized concept in philosophy and fiction, particularly science fiction. In fiction, time travel is typically achieved through the use of a hypothetical device known as a time machine. The idea of a time machine was popularized by H. G. Wells' 1895 novel The Time Machine. It is uncertain if time travel to the past is physically possible, and such travel, if at all feasible, may give rise to questions of causality.
NP-completenessIn computational complexity theory, a problem is NP-complete when: It is a decision problem, meaning that for any input to the problem, the output is either "yes" or "no". When the answer is "yes", this can be demonstrated through the existence of a short (polynomial length) solution. The correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying all possible solutions.
Time zoneA time zone is an area which observes a uniform standard time for legal, commercial and social purposes. Time zones tend to follow the boundaries between countries and their subdivisions instead of strictly following longitude, because it is convenient for areas in frequent communication to keep the same time. All time zones are defined as offsets from Coordinated Universal Time (UTC), ranging from UTC−12:00 to UTC+14:00. The offsets are usually a whole number of hours, but a few zones are offset by an additional 30 or 45 minutes, such as in India, South Australia and Nepal.
Solar timeSolar time is a calculation of the passage of time based on the position of the Sun in the sky. The fundamental unit of solar time is the day, based on the synodic rotation period. Traditionally, there are three types of time reckoning based on astronomical observations: apparent solar time and mean solar time (discussed in this article), and sidereal time, which is based on the apparent motions of stars other than the Sun. A tall pole vertically fixed in the ground casts a shadow on any sunny day.
P-completeIn computational complexity theory, a decision problem is P-complete (complete for the complexity class P) if it is in P and every problem in P can be reduced to it by an appropriate reduction. The notion of P-complete decision problems is useful in the analysis of: which problems are difficult to parallelize effectively, which problems are difficult to solve in limited space. specifically when stronger notions of reducibility than polytime-reducibility are considered.
DeterminacyDeterminacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness". The games studied in set theory are usually Gale–Stewart games—two-player games of perfect information in which the players make an infinite sequence of moves and there are no draws.
Reduction (complexity)In computability theory and computational complexity theory, a reduction is an algorithm for transforming one problem into another problem. A sufficiently efficient reduction from one problem to another may be used to show that the second problem is at least as difficult as the first. Intuitively, problem A is reducible to problem B, if an algorithm for solving problem B efficiently (if it existed) could also be used as a subroutine to solve problem A efficiently. When this is true, solving A cannot be harder than solving B.
Complete latticeIn mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a conditionally complete lattice. Specifically, every non-empty finite lattice is complete. Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.