Publication

Partitioning cographs into cliques and stable sets

Dominique de Werra, Tinaz Ekim
2005
Journal paper
Abstract

We consider the problem of partitioning the node set of a graph into p cliques and k stable sets, namely the (p,k)-coloring problem. Results have been obtained for general graphs \cite{hellcomp}, chordal graphs \cite{hellchordal} and cacti for the case where k=p in \cite{tidosplit} where some upper and lower bounds on the optimal value minimizing k are also presented. We focus on cographs and devise some efficient algorithms for solving (p,k)-coloring problems and cocoloring problems in O(n^2+nm) time and O(n^{3/2}) time respectively. We also give an algorithm for finding the maximum induced (p,k)-colorable subgraph. In addition to this, we present characterizations of (2,1)- and (2,2)-colorable cographs by forbidden configurations.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.