Let K be an algebraically closed field of characteristic zero, and let G be a connected reductive algebraic group over K. We address the problem of classifying triples (G, H, V ), where H is a proper connected subgroup of G, and V is a finitedimensional ir ...
We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's p-adic formal Manin-Mumford results for n-dimensional p-divisible formal groups F. In particular, given a finitely generated subgroup (sic) of F(Q(p)) and a close ...
Ulam asked whether all Lie groups can be represented faithfully on a countable set. We establish a reduction of Ulam's problem to the case of simple Lie groups. In particular, we solve the problem for all solvable Lie groups and more generally Lie groups w ...
We determine the dimensions of Ext -groups between simple modules and dual generalized Verma modules in singular blocks of parabolic versions of category O for complex semisimple Lie algebras and affine Kac-Moody algebras. ...
Let k be a field, and let L be an etale k-algebra of finite rank. If a is an element of k(x), let X-a be the affine variety defined by N-L/k(x) = a. Assuming that L has at least one factor that is a cyclic field extension of k, we give a combinatorial desc ...
We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...
We establish the Minimal Model Program for arithmetic threefolds whose residue characteristics are greater than five. In doing this, we generalize the theory of global F-regularity to mixed characteristic and identify certain stable sections of adjoint lin ...
Let G be either a simple linear algebraic group over an algebraically closed field of characteristic l>0 or a quantum group at an l-th root of unity. The category Rep(G) of finite-dimensional G-modules is non-semisimple. In this thesis, we develop new tech ...
Let k be an algebraically closed field of arbitrary characteristic, let G be a simple simply connected linear algebraic group and let V be a rational irreducible tensor-indecomposable finite-dimensional kG-module. For an element g of G we denote by $V_{g}( ...
Let G be a simple algebraic group over an algebraically closed field F of characteristic p >= h, the Coxeter number of G. We observe an easy 'recursion formula' for computing the Jantzen sum formula of a Weyl module with p-regular highest weight. We also d ...