Electric vehicles (EVs) are becoming more popular due to environmental consciousness. The limited availability of charging stations (CSs), compared to the number of EVs on the road, has led to increased range anxiety and a higher frequency of CS queries du ...
Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as ...
Decentralized learning is appealing as it enables the scalable usage of large amounts of distributed data and resources (without resorting to any central entity), while promoting privacy since every user minimizes the direct exposure of their data. Yet, wi ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
Predictive models based on machine learning (ML) offer a compelling promise: bringing clarity and structure to complex natural and social environments. However, the use of ML poses substantial risks related to the privacy of their training data as well as ...
Formally verifying the correctness of software is necessary to merit the trust people put in software systems. Currently, formal verification requires human effort to prove that a piece of code matches its specification and code changes to improve verifiab ...
In this paper, we present a model for the analytical computation of the power flow sensitivity coefficients (SCs) for hybrid AC/DC networks. The SCs are defined as the partial derivates of the nodal voltages with respect to the active and reactive power in ...
With the pervasive digitalization of modern life, we benefit from efficient access to information and services. Yet, this digitalization poses severe privacy challenges, especially for special-needs individuals. Beyond being a fundamental human right, priv ...
Mechanisms used in privacy-preserving machine learning often aim to guarantee differential privacy (DP) during model training. Practical DP-ensuring training methods use randomization when fitting model parameters to privacy-sensitive data (e.g., adding Ga ...
Graph Neural Networks (GNNs) have emerged as a powerful tool for learning on graphs, demonstrating exceptional performance in various domains. However, as GNNs become increasingly popular, new challenges arise. One of the most pressing is the need to ensur ...