Multiresolution Approximation Using Shifted Splines
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We consider using spline interpolation to improve the standard filtered back-projection (FBP) tomographic reconstruction algorithm. In particular, we propose to link the design of the filtering operator with the interpolation model that is applied to the s ...
Compact support is undoubtedly one of the wavelet properties that is given the greatest weight both in theory and applications. It is usually believed to be essential for two main reasons: (1) to have fast numerical algorithms, and (2) to have good time or ...
We analyze the representation of periodic signals in a scaling function basis. This representation is sufficiently general to include the widely used approximation schemes like wavelets, splines and Fourier series representation. We derive a closed form ex ...
We develop a spline calculus for dealing with fractional derivatives. After a brief review of fractional splines, we present the main formulas for computing the fractional derivatives of the underlying basis functions. In particular, we show that the $ γ ^ ...
We develop a spline calculus for dealing with fractional derivatives. After a brief review of fractional splines, we present the main formulas for computing the fractional derivatives of the underlying basis functions. In particular, we show that the $ γ ...
This paper presents an account of the current state of sampling, 50 years after Shannon's formulation of the sampling theorem. The emphasis is on regular sampling where the grid is uniform. This topic has benefited from a strong research revival during the ...
This chapter presents a survey of interpolation and resampling techniques in the context of exact, separable interpolation of regularly sampled data. In this context, the traditional view of interpolation is to represent an arbitrary continuous function as ...
Based on the theory of approximation, this paper presents a unified analysis of interpolation and resampling techniques. An important issue is the choice of adequate basis functions. We show that, contrary to the common belief, those that perform best are ...
The most essential ingredient of interpolation is its basis function. We have shown in previous papers that this basis need not be necessarily interpolating to achieve good results. On the contrary, several recent studies have confirmed that non-interpolat ...
Wavelets and radial basis functions (RBF) are two rather distinct ways of representing signals in terms of shifted basis functions. An essential aspect of RBF, which makes the method applicable to non-uniform grids, is that the basis functions, unlike wave ...