Type systemIn computer programming, a type system is a logical system comprising a set of rules that assigns a property called a type (for example, integer, floating point, string) to every "term" (a word, phrase, or other set of symbols). Usually the terms are various constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term.
Type classIn computer science, a type class is a type system construct that supports ad hoc polymorphism. This is achieved by adding constraints to type variables in parametrically polymorphic types. Such a constraint typically involves a type class T and a type variable a, and means that a can only be instantiated to a type whose members support the overloaded operations associated with T.
High-level programming languageIn computer science, a high-level programming language is a programming language with strong abstraction from the details of the computer. In contrast to low-level programming languages, it may use natural language elements, be easier to use, or may automate (or even hide entirely) significant areas of computing systems (e.g. memory management), making the process of developing a program simpler and more understandable than when using a lower-level language. The amount of abstraction provided defines how "high-level" a programming language is.
Kind (type theory)In the area of mathematical logic and computer science known as type theory, a kind is the type of a type constructor or, less commonly, the type of a higher-order type operator. A kind system is essentially a simply typed lambda calculus "one level up", endowed with a primitive type, denoted and called "type", which is the kind of any data type which does not need any type parameters. A kind is sometimes confusingly described as the "type of a (data) type", but it is actually more of an arity specifier.
Technical communicationTechnical communication (or Tech Comm) is communication of technical subject matter such as engineering, science, or technology content. The largest part of it tends to be technical writing, though importantly it often requires aspects of visual communication (which in turn sometimes entails technical drawing, requiring more specialized training). Technical communication also encompasses oral delivery modes such as presentations involving technical material.
System FSystem F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML. It was discovered independently by logician Jean-Yves Girard (1972) and computer scientist John C. Reynolds.
Technical writerA technical writer is a professional information communicator whose task is to transfer information between two or more parties, through any medium that best facilitates the transfer and comprehension of the information. Technical writers research and create information through a variety of delivery media (electronic, printed, audio-visual, and even touch). Example types of information include online help, manuals, white papers, design specifications, project plans, and software test plans.