Object detectionObject detection is a computer technology related to computer vision and that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including and video surveillance. It is widely used in computer vision tasks such as , vehicle counting, activity recognition, face detection, face recognition, video object co-segmentation.
Feature selectionFeature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Stylometry and DNA microarray analysis are two cases where feature selection is used. It should be distinguished from feature extraction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret by researchers/users, shorter training times, to avoid the curse of dimensionality, improve data's compatibility with a learning model class, encode inherent symmetries present in the input space.
Representative agentEconomists use the term representative agent to refer to the typical decision-maker of a certain type (for example, the typical consumer, or the typical firm). More technically, an economic model is said to have a representative agent if all agents of the same type are identical. Also, economists sometimes say a model has a representative agent when agents differ, but act in such a way that the sum of their choices is mathematically equivalent to the decision of one individual or many identical individuals.
Hodge theoryIn mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic. The theory was developed by Hodge in the 1930s to study algebraic geometry, and it built on the work of Georges de Rham on de Rham cohomology.