**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Analysis and numerical simulation of viscoelastic flows

Abstract

Mathematical and numerical aspects of viscoelastic flows are investigated here. Two simplified mathematical models are considered. They are motivated by a splitting algorithm for solving viscoelastic flows with free surfaces. The first model is a simplified Oldroyd-B model. Existence on a fixed time interval is proved in several Banach spaces provided the data are small enough. Short time existence is also proved for arbitrarily large data in Hölder spaces for the time variable. These results are based on the maximal regularity property of the Stokes operator and on the analycity behavior of the corresponding semi-group. A finite element discretization in space is then proposed. Existence of the numerical solution is proved for small data, as well as a priori error estimates, using an implicit function theorem framework. Then, the extension of these results to a stochastic simplified Hookean dumbbells model is discussed. Because of the presence of the Brownian motion, existence in a fixed time interval, provided the data are small enough, is proved only in some of the Banach spaces considered previously. The dumbbells' elongation is split in two parts, one satisfying a standart stochastic differential equation, the other satisfying a partial differential equation with a stochastic source term. A finite element discretization in space is also proposed. Existence of the numerical solution is proved for small data, as well as a priori error estimates. A numerical algorithm for solving viscoelastic flows with free surfaces is also described. This algorithm is based on a splitting method in time and two different meshes are used for the space discretization. Convergence of the numerical model is checked for the pure extensional flow and the filling of a pipe. Then, numerical results are reported for the stretching of a filament and for jet buckling.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related concepts (31)

Related publications (109)

Computer simulation

Computer simulation is the process of mathematical modelling, performed on a computer, which is designed to predict the behaviour of, or the outcome of, a real-world or physical system. The reliabi

Stochastic differential equation

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have m

Mathematical analysis

Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic function

Loading

Loading

Loading

Mathematical and numerical aspects of free surface flows are investigated. On one hand, the mathematical analysis of some free surface flows is considered. A model problem in one space dimension is first investigated. The Burgers equation with diffusion has to be solved on a space interval with one free extremity. This extremity is unknown and moves in time. An ordinary differential equation for the position of the free extremity of the interval is added in order to close the mathematical problem. Local existence in time and uniqueness results are proved for the problem with given domain, then for the free surface problem. A priori and a posteriori error estimates are obtained for the semi-discretization in space. The stability and the convergence of an Eulerian time splitting scheme are investigated. The same methodology is then used to study free surface flows in two space dimensions. The incompressible unsteady Navier-Stokes equations with Neumann boundary conditions on the whole boundary are considered. The whole boundary is assumed to be the free surface. An additional equation is used to describe the moving domain. Local existence in time and uniqueness results are obtained. On the other hand, a model for free surface flows in two and three space dimensions is investigated. The liquid is assumed to be surrounded by a compressible gas. The incompressible unsteady Navier-Stokes equations are assumed to hold in the liquid region. A volume-of-fluid method is used to describe the motion of the liquid domain. The velocity in the gas is disregarded and the pressure is computed by the ideal gas law in each gas bubble trapped by the liquid. A numbering algorithm is presented to recognize the bubbles of gas. Gas pressure is applied as a normal force on the liquid-gas interface. Surface tension effects are also taken into account for the simulation of bubbles or droplets flows. A method for the computation of the curvature is presented. Convergence and accuracy of the approximation of the curvature are discussed. A time splitting scheme is used to decouple the various physical phenomena. Numerical simulations are made in the frame of mould filling to show that the influence of gas on the free surface cannot be neglected. Curvature-driven flows are also considered.

Vincent Maronnier, Marco Picasso, Jacques Rappaz

A numerical model is presented for the simulation of complex fluid flows with free surfaces. The unknowns are the velocity and pressure fields in the liquid region, together with a function defining the volume fraction of liquid. Although the mathematical formulation of the model is similar to the volume of fluid (VOF) method, the numerical schemes used to solve the problem are different. A splitting method is used for the time discretization. At each time step, two advection problems and a generalized Stokes problem are to be solved. Two different grids are used for the space discretization. The two advection problems are solved on a fixed, structured grid made out of small rectangular cells, using a forward characteristic method. The generalized Stokes problem is solved using a finite element method on a fixed, unstructured mesh. Numerical results are presented for several test cases: the filling of an S-shaped channel, the filling of a disk with core, the broken dam in a confined domain. (C) 1999 Academic Press.

1999Vincent Maronnier, Marco Picasso, Jacques Rappaz

A numerical model is presented for the simulation of complex fluid flows with free surfaces in three space dimensions. The model described in Maronnier et al. (J. Comput. Phys. 1999; 155(2):439) is extended to three dimensional situations. The mathematical formulation of the model is similar to that of the volume of fluid (VOF) method, but the numerical procedures are different. A splitting method is used for the time discretization. At each time step, two advection problems-one for the predicted velocity field and the other for the volume fraction of liquid-are to be solved. Then, a generalized Stokes problem is solved and the velocity field is corrected. Two different grids are used for the space discretization. The two advection problems are solved on a fixed, structured grid made out of small cubic cells, using a forward characteristic method. The generalized Stokes problem is solved using continuous, piecewise linear stabilized finite elements on a fixed, unstructured mesh of tetrahedrons. The three-dimensional implementation is discussed. Efficient postprocessing algorithms enhance the quality of the numerical solution. A hierarchical data structure reduces memory requirements. Numerical results are presented for complex geometries arising in mold filling. Copyright (C) 2003 John Wiley Sons, Ltd.

2003