Functional analysisFunctional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, inner product, norm, or topology) and the linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous or unitary operators between function spaces.
Stochastic partial differential equationStochastic partial differential equations (SPDEs) generalize partial differential equations via random force terms and coefficients, in the same way ordinary stochastic differential equations generalize ordinary differential equations. They have relevance to quantum field theory, statistical mechanics, and spatial modeling. One of the most studied SPDEs is the stochastic heat equation, which may formally be written as where is the Laplacian and denotes space-time white noise.
Matrix splittingIn the mathematical discipline of numerical linear algebra, a matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. Many iterative methods (for example, for systems of differential equations) depend upon the direct solution of matrix equations involving matrices more general than tridiagonal matrices. These matrix equations can often be solved directly and efficiently when written as a matrix splitting. The technique was devised by Richard S. Varga in 1960.
Stone–Weierstrass theoremIn mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on a closed interval [a, b] can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the simplest functions, and because computers can directly evaluate polynomials, this theorem has both practical and theoretical relevance, especially in polynomial interpolation. The original version of this result was established by Karl Weierstrass in 1885 using the Weierstrass transform.
Spaces of test functions and distributionsIn mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued (or sometimes real-valued) functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the , that makes into a complete Hausdorff locally convex TVS.
Silly PuttySilly Putty is a toy containing silicone polymers that have unusual physical properties. It bounces, but it breaks when given a sharp blow, and it can also flow like a liquid. It contains viscoelastic liquid silicones, a type of non-Newtonian fluid, which makes it act as a viscous liquid over a long time period but as an elastic solid over a short time period. It was originally created during research into potential rubber substitutes for use by the United States in World War II. The name Silly Putty is a trademark of Crayola LLC.
Discrete two-point spaceIn topology, a branch of mathematics, a discrete two-point space is the simplest example of a totally disconnected discrete space. The points can be denoted by the symbols 0 and 1. Any disconnected space has a continuous mapping which is not constant onto the discrete two-point space. Conversely if a nonconstant continuous mapping to the discrete two-point space exists from a topological space, the space is disconnected.